Publications personnelle

17documents trouvés

10425
16/07/2010

Worst-case analysis of non-cooperative load balancing

O.BRUN, B.PRABHU

MRS

Manifestation avec acte : Workshop on Algorithmic Game Theory: Dynamics and Convergence in Distributed Systems, Bordeaux (France), 5 Juillet 2010, 5p. , N° 10425

Diffusable

122060
10052
01/03/2010

Price of Anarchy in Non-Cooperative Load Balancing

U.AYESTA, O.BRUN, B.PRABHU

MRS

Manifestation avec acte : 29th Annual International Conference on Computer Communications (IEEE INFOCOM 2010), San Diego (USA), 15-19 Mars 2010, 6p. , N° 10052

Diffusable

120993
10067
08/02/2010

Prix de l'Anarchie et Equilibrage de Charge Non-Coopératif

U.AYESTA, O.BRUN, B.PRABHU

MRS

Rapport LAAS N°10067, Février 2010

Diffusable

120440
09822
01/10/2009

Dynamic Discrete Power Control in Cellular Networks

E.ALTMAN, K.E.AVRACHENKOV, I.MENACHE, G.MILLER, B.PRABHU, A.SHWARTZ

INRIA Sophia, MIT, IPI RAN, MRS, TECHNION

Revue Scientifique : IEEE Transactions on Automatic Control, Vol.54, N°10, pp. 2328-2340, Octobre 2009 , N° 09822

Diffusable

120217
09833
11/09/2009

Price of Anarchy in Non-Cooperative Load Balancing

U.AYESTA, O.BRUN, B.PRABHU

MRS

Rapport LAAS N°09833, 11 Septembre 2009

Lien : http://hal.archives-ouvertes.fr/hal-00416123/fr/

Diffusable

120239
09827
04/02/2009

Analysis of a Red Queue : A Singular Perturbation Approach

E.ALTMAN, K.E.AVRACHENKOV, B.PRABHU

INRIA Sophia, MRS

Ouvrage (auteur) : Traffic engineering, performance evaluation studies and tools for heterogeneous networks, River Publishers, N°978-87-92329-16-5, 4 Février 2009, pp.371-397 , N° 09827

Diffusable

120225
08295
25/06/2008

Load balancing in processor sharing systems

E.ALTMAN, U.AYESTA, B.PRABHU

INRIA Sophia, MRS

Rapport LAAS N°08295, Juin 2008, 11p.

Lien : http://hal.archives-ouvertes.fr/hal-00286455/fr/

Diffusable

Plus d'informations

Abstract

In this paper, we investigate optimal load balancing strategies for a multi-class multi-server processor-sharing system with a Poisson input stream, heterogeneous service rates, and a server-dependent holding cost per unit time. Specifically, we study $(i)$ the centralized setting in which a dispatcher routes incoming jobs based on their service time requirements so as to minimize the weighted mean sojourn time in the system; and $(ii)$ the decentralized, distributed non-cooperative setting in which each job, aware of its service time, selects a server with the objective of minimizing its weighted mean sojourn time in the system. For the decentralized setting we show the existence of a potential function, which allows us to transform the non-cooperative game into a standard convex optimization problem. For the two aforementioned settings, we characterize the set of optimal routing policies and obtain a closed form expression for the load on each server under any such policy. Furthermore, we show the existence of an optimal policy that routes a job independently of its service time requirement. We also show that the set of servers used in the decentralized setting is a subset of set of servers used in the centralized setting. Finally, we compare the performance perceived by jobs in the two settings by studying the so-called Price of Anarchy (PoA), that is, the ratio between the decentralized and the optimal centralized solutions. When the holding cost per unit time is the same for all servers, it is known that the PoA is upper bounded by the number of servers in the system. Interestingly, we show that the PoA for our system can be unbounded. In particular this indicates that in our system, the performance of selfish routing can be extremely inefficient.

Mots-Clés / Keywords
M/G/1 processor; Sharing queues; Server farms; Load balancing; Potential game; Price of anarchy;

114092
Pour recevoir une copie des documents, contacter doc@laas.fr en mentionnant le n° de rapport LAAS et votre adresse postale. Signalez tout problème de fonctionnement à sysadmin@laas.fr. http://www.laas.fr/pulman/pulman-isens/web/app.php/