Publications personnelle

43documents trouvés

10234
15/12/2010

Sensor placement and fault detection using an efficient fuzzy feature selection approach

L.HEDJAZI, T.KEMPOWSKY, L. DESPENES, M.V.LE LANN, S.ELGUE, J.AGUILAR MARTIN

DISCO, LGC

Manifestation avec acte : IEEE Conference on Decision and Control (CDC 2010), Atlanta ( USA), 15-17 Décembre 2010, pp.6827-6832 , N° 10234

Diffusable

123374
10394
08/08/2010

Fuzzy mechanisms for unified reasoning about heterogeneous data

L.HEDJAZI, J.AGUILAR MARTIN, M.V.LE LANN, T.KEMPOWSKY

DISCO

Manifestation avec acte : International Workshop on Qualitative Reasonning, Portland (USA), 8-10 Août 2010, 6p. , N° 10394

Diffusable

123242
10361
18/06/2010

Vers un principe généralisé pour le traitement de données hétérogènes: application à la classification et la sélection d'attributs

L.HEDJAZI, M.V.LE LANN, T.KEMPOWSKY, J.AGUILAR MARTIN

DISCO

Rapport LAAS N°10361, Juin 2010, 20p.

Diffusable

121738
10151
18/03/2010

Membership-margin based feature selection for mixed-type and high-dimensional data

L.HEDJAZI, J.AGUILAR MARTIN, M.V.LE LANN, T.KEMPOWSKY

DISCO

Rapport LAAS N°10151, Mars 2010, 33p.

Diffusable

120809
09597
20/01/2010

Prognosis of breast cancer based on a fuzzy classification method

L.HEDJAZI, T.KEMPOWSKY, M.V.LE LANN, J.AGUILAR MARTIN

DISCO

Manifestation avec acte : 3rd International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2010) 1st International Conference on Bioinformatics (BIOINFORMATICS 2010), Valence (Espagne), 20-23 Janvier 2010, pp.123-130 , N° 09597

Diffusable

120358
09213
02/09/2009

Classification floue de données intervallaires : application au pronostic du cancer

L.HEDJAZI, T.KEMPOWSKY, M.V.LE LANN, J.AGUILAR MARTIN

DISCO

Manifestation avec acte : XVIèmes Rencontres Francophones de la Société Francophone de Classification, SFC 2009, Grenoble (France), 2-4 Septembre 2009, pp.165-168 , N° 09213

Diffusable

Plus d'informations

Mots-Clés / Keywords
Analyse des données multi-variables; Classification floue; Similarité; Pronostic du cancer;

119219
08692
18/06/2009

Contribution of fuzzy classification for the diagnosis of complex systems

C.ISAZA NARVAEZ, A.ORANTES, T.KEMPOWSKY, M.V.LE LANN

UTM, Mexico, DISCO, UDEA

Manifestation avec acte : SAFE PROCESS, Barcelone (Espagne), 30 Juin - 3 Juillet 2009, 6p. , N° 08692

Diffusable

Plus d'informations

Abstract

The diagnosis of processes can be defined as the identification of their functional states. When a mathematical model is difficult or not possible to obtain (which is generally the case for complex chemical processes), knowledge on the process behaviour can be extracted from historical measurements or complex simulators. This knowledge is then organized as a partition of the data set into classes representing the functional states of the process (normal or faulty operations). Among the data mining techniques, those including fuzzy logic present the advantages to express the data membership degree to several classes. This article presents a methodology that automatically finds an optimal space partition in terms of clusters compactness and separation using only the membership matrix obtained from a fuzzy classification. Test and validation results of this methodology applied to a continuous intensified chemical micro-reactor will be presented.

Mots-Clés / Keywords
Diagnosis; Fuzzy classification; Chemical micro-reactor;

118173
09214
14/05/2009

Pronostic du cancer du sein à partir d'une méthode de classification floue

L.HEDJAZI, T.KEMPOWSKY, M.V.LE LANN

DISCO

Rapport LAAS N°09214, Mai 2009, 12p.

Diffusable

Plus d'informations

Mots-Clés / Keywords
Classification floue; Pronostic; Cancer du sein;

117423
08800
30/03/2009

Conduite et diagnostic en temps réel sur microréacteur intensifié

T.KEMPOWSKY, M.V.LE LANN

DISCO

Rapport de Contrat : INPAC. projet Minefi/Simap. Convention n° 072906304, Mars 2009 , N° 08800

Non diffusable

117028
07321
26/11/2007

Selection of sensors by a new methodology coupling a classification technique and entropy criteria

A.ORANTES, T.KEMPOWSKY, M.V.LE LANN, L.PRAT, S.ELGUE, C.GOURDON, M.CABASSUD

DISCO, UTM, Mexico, INPT, LGC, ENSIGC-LGC

Revue Scientifique : Chemical Engineering Research and Design: Transactions of the Institution of Chemical Engineers Part A , Vol.85, N°A6, pp.825-838, Novembre 2007 , N° 07321

Diffusable

Plus d'informations

Abstract

Complex industrial processes invest a lot of money in sensors and automation devices to monitor and supervise the process in order to guarantee the production quality and the plant and operators safety. Fault detection is one of the multiple tasks of process monitoring and it critically depends on the sensors that measure the significant process variables. Nevertheless, most of the work on fault detection and diagnosis found in literature place more emphasis on developing procedures to perform diagnosis given a set of sensors, and less on determining the actual location of sensors for efficient identification of faults. A methodology based on learning and classification techniques and on the information quantity measured by the Entropy concept, is proposed in order to address the problem of sensor location for fault identification. The proposed methodology has been applied to a continuous intensified reactor, the 'open plate reactor (OPR)', developed by Alfa Laval and studied at the Laboratory of Chemical Engineering of Toulouse. The different steps of the methodology are explained through its application to the carrying out of an exothermic reaction.

Mots-Clés / Keywords
Fault detection; Sensor location; Learning; Classification; Information theory;

112084
Pour recevoir une copie des documents, contacter doc@laas.fr en mentionnant le n° de rapport LAAS et votre adresse postale. Signalez tout problème de fonctionnement à sysadmin@laas.fr. http://www.laas.fr/pulman/pulman-isens/web/app.php/