Publications personnelle

96documents trouvés

07321
26/11/2007

Selection of sensors by a new methodology coupling a classification technique and entropy criteria

A.ORANTES, T.KEMPOWSKY, M.V.LE LANN, L.PRAT, S.ELGUE, C.GOURDON, M.CABASSUD

DISCO, UTM, Mexico, INPT, LGC, ENSIGC-LGC

Revue Scientifique : Chemical Engineering Research and Design: Transactions of the Institution of Chemical Engineers Part A , Vol.85, N°A6, pp.825-838, Novembre 2007 , N° 07321

Diffusable

Plus d'informations

Abstract

Complex industrial processes invest a lot of money in sensors and automation devices to monitor and supervise the process in order to guarantee the production quality and the plant and operators safety. Fault detection is one of the multiple tasks of process monitoring and it critically depends on the sensors that measure the significant process variables. Nevertheless, most of the work on fault detection and diagnosis found in literature place more emphasis on developing procedures to perform diagnosis given a set of sensors, and less on determining the actual location of sensors for efficient identification of faults. A methodology based on learning and classification techniques and on the information quantity measured by the Entropy concept, is proposed in order to address the problem of sensor location for fault identification. The proposed methodology has been applied to a continuous intensified reactor, the 'open plate reactor (OPR)', developed by Alfa Laval and studied at the Laboratory of Chemical Engineering of Toulouse. The different steps of the methodology are explained through its application to the carrying out of an exothermic reaction.

Mots-Clés / Keywords
Fault detection; Sensor location; Learning; Classification; Information theory;

112084
05536
26/11/2007

Classification as an aid tool for the selection of sensors used for fault detection and isolation

A.ORANTES, T.KEMPOWSKY, M.V.LE LANN

DISCO

Revue Scientifique : Transactions of the Institute of Measurement and Control, Vol.28, N°5, pp.457-479, Novembre 2007 , N° 05536

Diffusable

Plus d'informations

Abstract

Complex industrial processes demand significant financial investment in sensors and automation devices to monitor and supervise the process in order to guarantee the production quality and the plant and operators safety. Fault detection is one of the multiple tasks of process monitoring and it critically depends on the sensors that measure the significant process variables. Nevertheless, most of the work on fault detection and diagnosis found in literature place more emphasis on developing procedures to perform diagnosis given a set of sensors, and less on determining the actual location of sensors for efficient identification of faults. A methodology based on learning and classification techniques and the information quantity measure, by the entropy concept, is proposed in order to address the problem of sensor location for fault identification. The proposed methodology has been applied to a new concept of intensification reactor, the Open Plate Reactor, developed by Alfa Laval and the Laboratory of Chemical Engineering located at Toulouse.

Mots-Clés / Keywords
Sensor location; Learning; Classification; Information theory; Fault detection;

112085
05522
04/09/2007

A new support methodology for the placement of sensors used for fault detection and diagnosis

A.ORANTES, T.KEMPOWSKY, M.V.LE LANN, J.AGUILAR MARTIN

DISCO

Revue Scientifique : Chemical Engineering and Processing, Vol.47, N°3, pp.330-348, Septembre 2007 , N° 05522

Diffusable

Plus d'informations

Abstract

The principal objective of this work is the identification and the location of sensors on a complex chemical plant needed for online process situation monitoring, fault detection and diagnosis of malfunctions. This identification is based on the use of a classification technique and a measure of the quantity of information provided by the process variables, the entropy. Any classification method providing an interpretable description of the classes describing the process situations can be applied. In this work, the LAMDA (Learning Algorithm for Multivariate Data Analysis) classification method was employed for the design of the support tool. LAMDA combines Fuzzy Logic concepts, such as the adequacy of an element to a class, and the neural model representation. It allows, without changing of algorithm, to carry out classifications using a supervised (directed) or unsupervised (automatic) learning stage. The illustration of such a methodology is shown on a classical chemical plant: the propylene glycol production plant. This chemical process is composed of a mixer, a chemical reactor (CSTR) and a rectification column. This plant has been designed and simulated (dynamic simulation) using the well-known HYSYS simulation package. This simulation model has been used to generate scenarios of the various faults and malfunctions generally encountered in this type of plant. In particular, faults affecting the production quality have been simulated. After a short presentation of the most popular classification methods and the Entropy concept, the steps for the development of the proposed support tool are explained. This methodology is then applied to the example of the propylene glycol production plant. The present results highlight the contribution of both the methodology to select the right sensors and the classification technique to the design of a behavioral model used for monitoring and fault detection.

Mots-Clés / Keywords
Fault detection; Sensor location; Classification; Information theory; Chemical plant ;

111124
07376
01/09/2007

Robust fault detection for the hybrid dynamic systems

N.OLIVIER-MAGET, G.HETREUX, J.M.LE LANN, M.V.LE LANN

LGC, ENSIGC-LGC, DISCO

Manifestation avec acte : The Fourth Conference on Management and Control of Production and Logistics (MCPL 2007), Sibiu (Roumanie), 27-30 Septembre 2007, 6p. , N° 07376

Diffusable

Plus d'informations

Mots-Clés / Keywords
Extended Kalman filter; Dynamic hybrid simulation; Object differential Petri nets; Fault detection;

112995
07445
01/08/2007

System operation modes identification by means of finite time window pseudo-inverse estimation and learning parameter space partition

C.ISAZA NARVAEZ, E.DIEZ LLEDO, T.KEMPOWSKY, J.AGUILAR MARTIN, M.V.LE LANN

DISCO

Rapport LAAS N°07445, Août 2007, 49p.

Diffusion restreinte

Plus d'informations

Mots-Clés / Keywords
Modes identification; Parameter estimation; Classification method;

111242
07012
01/06/2007

Process monitoring using residuals and fuzzy classification with learning capabilities

J.AGUILAR MARTIN, C.ISAZA NARVAEZ, E.DIEZ LLEDO, M.V.LE LANN, J.WAISSMAN-VILANOVA

DISCO, UAEH

Manifestation avec acte : IFSA 2007 World Congress, Cancun (Mexique), 18-21 Juin 2007, 10p. , N° 07012

Diffusable

Plus d'informations

Abstract

This paper presents a monitoring methodology to identify complex systems faults. This methodology combines the production of meaningful error signals (residuals) obtained by comparison between the model outputs and the system outputs, with a posterior fuzzy classification. In a first off-line phase (learning) the classification method characterises each fault. In the recognition phase, the classification method identifies the faults. The chose classification method permits to characterize faults non included in the learning data. This monitoring process avoids the problem of defining thresholds for faults isolation. The residuals analysis and not the system variables themselves, permit us to separate fault recognition from system operation point influence. The paper describes the proposed methodology using a benchmark of a two interconnected tanks system.

Mots-Clés / Keywords
Fault identification; Fault isolation; Residuals; Fuzzy classification;

111263
07652
01/06/2007

Decision method for states validation in drinking water plant monitoring

C.ISAZA NARVAEZ, E.DIEZ LLEDO, H.HERNANDEZ DE LEON, J.AGUILAR MARTIN, M.V.LE LANN

DISCO

Manifestation avec acte : 10th Computer Applications in Biotechnology (CAB-2007), Cancun (Mexique), 4-6 Juin 2007, 6p. , N° 07652

Diffusable

Plus d'informations

Mots-Clés / Keywords
Fuzzy entropy measures; Decision index; Transition validation; Water plant monitoring;

112062
07300
01/05/2007

Fault detection filter applied to hybrid dynamic system monitoring

N.OLIVIER-MAGET, G.HETREUX, J.M.LE LANN, M.V.LE LANN

LGC, ENSIGC-LGC, DISCO

Manifestation avec acte : Conference on Systems and Control (CSC 2007), Marrakech (Maroc), 16-18 Mai 2007, 6p. , N° 07300

Diffusable

Plus d'informations

Abstract

PrODHyS is a dynamic hybrid simulation environment which provides common and reusable object oriented components designed for the development and the management of dynamic simulation of industrial systems. In this work, we present a method for the fault detection based on the comparison the real system and the reference model evolution generated by the extended Kalman filter. The reference model is simulated by PrODHyS.

110750
07241
01/02/2007

Fault detection using a hybrid dynamic simulator: application to a hydraulic system

N.OLIVIER-MAGET, G.HETREUX, J.M.LE LANN, M.V.LE LANN

LGC, ENSIGC-LGC, DISCO

Manifestation avec acte : International Modeling and Simulation Multiconference (IMSM07). AIS-CMS 2007, Buenos Aires (Argentine), 8-10 Février 2007, 6p. , N° 07241

Diffusable

110386
06573
01/01/2007

Gestion supervisée d'une unité de coagulation pour la potabilisation des eaux à partir d'une méthodologie d'apprentissage et d'expertise

B.LAMRINI, M.V.LE LANN, E.K.LAKHAL, A.BENHAMMOU

Marrakech, DISCO

Revue Scientifique : Revue des Sciences de l'Eau, Vol.20, N°4, pp.325-338, 2007 , N° 06573

Diffusable

Plus d'informations

Résumé

Le travail présenté propose une méthodologie de classification par apprentissage qui permet lidentification des états fonctionnels sur une unité de coagulation impliquée dans le traitement des eaux de surface. La supervision et le diagnostic de ce procédé ont été réalisés en utilisant la méthode de classification LAMDA (Learning Algorithm for Multivariate Data Analysis). Cette méthodologie dapprentissage et dexpertise permet dexploiter et dagréger toutes les informations provenant du procédé et de son environnement ainsi que les connaissances de lexpert. Létude montre quil est possible dajouter aux informations issues des capteurs classiques (température, matières en suspension, pH, conductivité, oxygène dissous), la valeur de la dose de coagulant calculée par un capteur logiciel développé dans une étude antérieure afin daffiner le diagnostic. Le site dapplication choisi pour lidentification des états fonctionnels est la station de production deau potable Rocade de la ville de Marrakech, Maroc.

Mots-Clés / Keywords
Procédé de coagulation; Classification; Apprentissage supervisé; Apprentissage non supervisé; Reconnaissance de formes; Logique floue;

113837
Pour recevoir une copie des documents, contacter doc@laas.fr en mentionnant le n° de rapport LAAS et votre adresse postale. Signalez tout problème de fonctionnement à sysadmin@laas.fr. http://www.laas.fr/pulman/pulman-isens/web/app.php/