Retour au site du LAAS-CNRS

Laboratoire d’analyse et d’architecture des systèmes

Publications de l'équipe TSF

Choisir la langue : FR | EN

1431documents trouvés

17404
07/11/2017

Outil logiciel HAZOP-UML - Document des cas d'utilisation

J.M.Larré, K.CABRERA CASTILLOS, J.GUIOCHET

IDEA, TSF

Rapport LAAS N°17404, Novembre 2017, 18p.

Lien : https://hal.laas.fr/hal-01613787

Diffusable

141414
17317
24/10/2017

Reliability enhancement of redundancy management in AFDX networks

M.LI, G.ZHU, Y.SAVARIA, M.LAUER

Ecole Montréal, TSF

Revue Scientifique : IEEE Transactions on Industrial Informatics, Vol.13, N°5, pp.2118-2129, Octobre 2017, DOI: 10.1109/TII.2017.2732345 , N° 17317

Lien : https://hal.laas.fr/hal-01585141

Diffusable

Plus d'informations

Abstract

AFDX is a safety critical network in which a redundancy management mechanism is employed to enhance the reliability of the network. However, as stated in the ARINC664-P7 standard, there still exists a potential problem, which may fail redundant transmissions due to sequence inversion in the redundant channels. In this paper, we explore this phenomenon and provide its mathematical analysis. It is revealed that the variable jitter and the transmission latency difference between two successive frames are the two main sources of sequence inversion. Thus, two methods are proposed and investigated to mitigate the effects of jitter pessimism, which can eliminate the potential risk. A case study is carried out and the obtained results confirm the validity and applicability of the developed approaches.

141338
17295
23/10/2017

Experience Report: log mining using natural language processing and application to anomaly detection

C.BERTERO, M.ROY, C.SAUVANAUD, G.TREDAN

TSF

Manifestation avec acte : International Symposium on Software Reliability Engineering ( ISSRE ) 2017 du 23 octobre au 26 octobre 2017, Toulouse (France), Octobre 2017, 10p. , N° 17295

Lien : https://hal.laas.fr/hal-01576291

Diffusable

Plus d'informations

Abstract

Event logging is a key source of information on a system state. Reading logs provides insights on its activity, assess its correct state and allows to diagnose problems. However, reading does not scale: with the number of machines increasingly rising, and the complexification of systems, the task of auditing systems' health based on logfiles is becoming overwhelming for system administrators. This observation led to many proposals automating the processing of logs. However, most of these proposal still require some human intervention, for instance by tagging logs, parsing the source files generating the logs, etc. In this work, we target minimal human intervention for logfile processing and propose a new approach that considers logs as regular text (as opposed to related works that seek to exploit at best the little structure imposed by log formatting). This approach allows to leverage modern techniques from natural language processing. More specifically, we first apply a word embedding technique based on Google's word2vec algorithm: logfiles' words are mapped to a high dimensional metric space, that we then exploit as a feature space using standard classifiers. The resulting pipeline is very generic, computationally efficient, and requires very little intervention. We validate our approach by seeking stress patterns on an experimental platform. Results show a strong predictive performance (≈ 90% accuracy) using three out-of-the-box classifiers.

140787
17189
12/09/2017

Confidence assessment framework for safety arguments

R.WANG, J.GUIOCHET, G.MOTET

TSF

Manifestation avec acte : International Conference on Computer Safety, Reliability and Security ( SafeComp ) 2017 du 12 septembre au 15 septembre 2017, Trento (Italie), Septembre 2017, 14p. , N° 17189

Lien : https://hal.archives-ouvertes.fr/hal-01533221

Diffusable

Plus d'informations

Abstract

Confidence in safety critical systems is often justified by safety arguments. The excessive complexity of systems nowadays introduces more uncertainties for the arguments reviewing. This paper proposes a framework to support the argumentation assessment based on experts' decision and confidence in the decision for the lowest level claims of the arguments. Expert opinion is extracted and converted in a quantitative model based on Dempster-Shafer theory. Several types of argument and associated formulas are proposed. A preliminary validation of this framework is realized through a survey for safety experts.

140333
17230
08/09/2017

Toward an intrusion detection approach for IoT based on radio communications profiling

J.ROUX, E.ALATA, V.NICOMETTE, M.KAANICHE

TSF

Manifestation avec acte : European Dependable Computing Conference ( EDCC ) 2017 du 04 septembre au 08 septembre 2017, Genève (Suisse), Septembre 2017, 4p. , N° 17230

Lien : https://hal.laas.fr/hal-01561710

Diffusable

Plus d'informations

Abstract

Nowadays, more and more Internet-of-Things (IoT) smart products, interconnected through various wireless communication technologies (Wifi, Bluetooth, Zigbee, Z-wave, etc.) are integrated in daily life, especially in homes, factories, cities, etc. Such IoT technologies have become very attractive with a large variety of new services offered to improve the quality of life of the endusers or to create new economic markets. However, the security of such connected objects is a real concern due to weak or flawed security designs, configuration errors or imperfect maintenance. Moreover, the vulnerabilities discovered in IoT products are often difficult to eliminate because, most of the time, they cannot be patched easily. Therefore, protection mechanisms are needed to mitigate the potential risks induced by such objects in private and public connected areas. In this paper, we propose a novel approach to detect potential attacks in smart places (e.g. smart homes) by detecting deviations from legitimate communication behavior, in particular at the physical layer. The proposed solution is based on the profiling and monitoring of the Radio Signal Strenght Indication (RSSI) associated to the wireless transmissions of the connected objects. A machine learning neural network algorithm is used to characterize legitimate communications and to identify suspiscious scenarios. We show the feasibility of this approach and discuss some possible application cases.

140513
17377
01/09/2017

DYNASCORE: DYNAmic Software COntroller to increase REsource utilization in mixed-critical systems

A.KRITIKAKOU, T.MARTY, M.ROY

INRIA Rennes, TSF

Revue Scientifique : ACM Transactions on Design Automation of Electronic Systems, Vol.23, N°2, 13p., Septembre 2017 , N° 17377

Lien : https://hal.archives-ouvertes.fr/hal-01559696

Diffusable

Plus d'informations

Abstract

In real-time mixed-critical systems, Worst-Case Execution Time analysis (WCET) is required to guarantee that timing constraints are respected —at least for high criticality tasks. However, the WCET is pessimistic compared to the real execution time, especially for multicore platforms. As WCET computation considers the worst-case scenario, it means that whenever a high criticality task accesses a shared resource in multi-core platforms, it is considered that all cores use the same resource concurrently. This pessimism in WCET computation leads to a dramatic under utilization of the platform resources, or even failing to meet the timing constraints. In order to increase resource utilization while guaranteeing real-time guarantees for high criticality tasks, previous works proposed a run-time control system to monitor and decide when the interferences from low criticality tasks cannot be further tolerated. However, in the initial approaches, the points where the controller is executed were statically predefined. In this work, we propose a dynamic run-time control which adapts its observations to on-line temporal properties, increasing further the dynamism of the approach, and mitigating the unnecessary overhead implied by existing static approaches. Our dynamic adaptive approach allows to control the ongoing execution of tasks based on run-time information, and increases further the gains in terms of resource utilization compared with static approaches.

141273
17104
25/08/2017

A toolset for mobile systems testing

P.ANDRE, N.RIVIERE, H.WAESELYNCK

TSF

Manifestation avec acte : International Workshop on Verification and Evaluation of Computer and Communication Systems ( VECoS ) 2017 du 24 août au 25 août 2017, Montréal (Canada), Août 2017, pp.124-138 , N° 17104

Lien : https://hal.laas.fr/hal-01499518

Diffusable

Plus d'informations

Abstract

Validation of mobile applications needs taking account of context (such network topology) and interactions between mobile nodes. Scenario-based approaches are well-suited to describe the behavior and interactions to observe in distributed systems. The difficulty to control accurately the execution context of such applications has led us to use passive testing. This paper presents a toolset which supports specification and verification of scenarios. A UML-based formal language, called TERMOS, has been implemented for specifying scenarios in mobile computing systems. These scenarios capture the key properties which are automatically checked on the traces, considering both the spatial configuration of nodes and their communication. We give an overview of the language design choices, its semantics and the implementation of the tool chain. The approach is demonstrated on a case study.

141032
17200
29/07/2017

Can robot navigation bugs be found in simulation? An exploratory study

T.SOTIROPOULOS, H.WAESELYNCK, J.GUIOCHET, F.INGRAND

TSF, RIS

Manifestation avec acte : IEEE International Conference on Software Quality, Reliability and Security ( QRS ) 2017 du 25 juillet au 29 juillet 2017, Prague (République Tchèque), Juillet 2017, 10p. , N° 17200

Lien : https://hal.archives-ouvertes.fr/hal-01534235

Diffusable

Plus d'informations

Abstract

The ability to navigate in diverse and previously unknown environments is a critical service of autonomous robots. The validation of the navigation software typically involves test campaigns in the field, which are costly and potentially risky for the robot itself or its environment. An alternative approach is to perform simulation-based testing, by immersing the software in virtual worlds. A question is then whether the bugs revealed in real worlds can also be found in simulation. The paper reports on an exploratory study of bugs in an academic software for outdoor robots navigation. The detailed analysis of the triggers and effects of these bugs shows that most of them can be revealed in low-fidelity simulation. It also provides insights into interesting navigation scenarios to test as well as into how to address the test oracle problem.

140374
17224
01/06/2017

The many faces of graph dynamics

Y.A.PIGNOLET, M.ROY, S.SCHMID, G.TREDAN

ABB CRC, Switzerland, TSF, AAU

Revue Scientifique : Journal of Statistical Mechanics: Theory and Experiment, Vol.2017, N°6, 063401p., Juin 2017 , N° 17224

Lien : https://hal.archives-ouvertes.fr/hal-01559708

Diffusable

Plus d'informations

Abstract

The topological structure of complex networks has fascinated researchers for several decades, resulting in the discovery of many universal properties and reoccurring characteristics of different kinds of networks. However, much less is known today about the network dynamics: indeed, complex networks in reality are not static, but rather dynamically evolve over time. Our paper is motivated by the empirical observation that network evolution patterns seem far from random, but exhibit structure. Moreover, the specific patterns appear to depend on the network type, contradicting the existence of a " one fits it all " model. However, we still lack observables to quantify these intuitions, as well as metrics to compare graph evolutions. Such observables and metrics are needed for extrapolating or predicting evolutions, as well as for interpolating graph evolutions. To explore the many faces of graph dynamics and to quantify temporal changes, this paper suggests to build upon the concept of centrality, a measure of node importance in a network. In particular, we introduce the notion of centrality distance, a natural similarity measure for two graphs which depends on a given centrality, characterizing the graph type. Intuitively, centrality distances reflect the extent to which (non-anonymous) node roles are different or, in case of dynamic graphs, have changed over time, between two graphs. We evaluate the centrality distance approach for five evolutionary models and seven real-world social and physical networks. Our results empirically show the usefulness of centrality distances for characterizing graph dynamics compared to a null-model of random evolution, and highlight the differences between the considered scenarios. Interestingly, our approach allows us to compare the dynamics of very different networks, in terms of scale and evolution speed.

140480
17120
29/05/2017

L'aspect topologique des recommandations

E.LE MERRER, G.TREDAN

Technicolor France, TSF

Manifestation avec acte : Rencontres Francophones sur les Aspects Algorithmiques des Télécommunications ( ALGOTEL ) 2017 du 29 mai au 02 juin 2017, Quiberon (France), Mai 2017, 4p. , N° 17120

Lien : https://hal.archives-ouvertes.fr/hal-01517738

Diffusable

Plus d'informations

Résumé

La recommandation joue un rôle central dans le e-commerce et dans l'industrie du divertissement. L'intérêt croissant pour la transparence algorithmique nous motive dans cet article à observer les résultats de recommandations sous la forme d'un graphe capturant les navigations proposées dans l'espace des items. Nous argumentons qu'une telle approche en "boite noire" est utile dans le cas d'une exploration limitée à un utilisateur: nous illustrons une topologie tirée de recommandations à un utilisateur de Youtube, fournissons ses caractéristiques clés, et montrons qu'elle renseigne sur la connaissance de cet utilisateur par le système. Nous montrons ensuite que l'analyse de cette topologie d'aborder la question du \text{biais} potentiel dans ces recommandations. Nous postulons que les systèmes de recommandation produisent naturellement des topologies cohérentes, et qu'une manipulation de ces résultats par l'ajout de liens biaisés a toutes les chances de violer cette cohérence (à la manières des liens longs d'un modèle "petit monde"). Ce postulat est supporté par l'analyse d'un modèle génératif basé sur les kNN et par l'exploitation du crawl Youtube, en ciblant la prédiction de liens "Recommandé pour vous" (i.e., biaisés ou non par Youtube).

139773
Les informations recueillies font l’objet d’un traitement informatique destiné à des statistiques d'utilisation du formulaire de recherche dans la base de données des publications scientifiques. Les destinataires des données sont : le service de documentation du LAAS.Conformément à la loi « informatique et libertés » du 6 janvier 1978 modifiée en 2004, vous bénéficiez d’un droit d’accès et de rectification aux informations qui vous concernent, que vous pouvez exercer en vous adressant à
Pour recevoir une copie des documents, contacter doc@laas.fr en mentionnant le n° de rapport LAAS et votre adresse postale. Signalez tout problème de dysfonctionnement à sysadmin@laas.fr. http://www.laas.fr/pulman/pulman-isens/web/app.php/