Retour au site du LAAS-CNRS

Laboratoire d’analyse et d’architecture des systèmes

Publications de l'équipe OSE

Choisir la langue : FR | EN

108documents trouvés

18375
23/11/2018

Acoustic flat lensing using an indefinite medium

M.DUBOIS, J.PERCHOUX, A.VANEL, C.TRONCHE, Y.ACHAOUI, G.DUPONT, K.BERTLING, A.D.RAKIC, T.ANTONAKAKIS, S.ENOCH, R.ABDEDDAIM, R.V.CRASTER, S.GUENNEAU

Fresnel, OSE, Imperial College, I2C, FEMTO-ST, IRPHE, QUT, Multiwave Technologie

Rapport LAAS N°18375, Novembre 2018, 5p.

Lien : https://hal.archives-ouvertes.fr/hal-01917261

Diffusable

Plus d'informations

Abstract

Acoustic flat lensing is achieved here by tuning a phononic array to have indefinite medium behaviour in a narrow frequency spectral region along the acoustic branch in the irreducible Brillouin zone (IBZ). This is confirmed by the occurrence of a flat band along an unusual path in the IBZ and by interpreting the intersection point of isofrequency contours on the corresponding isofrequency surface; coherent directive beams are formed whose reflection from the array surfaces create lensing. Theoretical predictions using a mass-spring lattice approximation of the phononic crystal (PC) are corroborated by time-domain experiments, airborne acoustic waves generated by a source with a frequency centered about 10.6 kHz, placed at three different distances from one side of a finite PC slab, constructed from polymeric spheres, yield distinctive focal spots on the other side. These experiments evaluate the pressure field using optical feedback interferometry and demonstrate precise control of the three-dimensional wave trajectory through a sonic crystal.

145253
18298
01/08/2018

New stability method of a multirate controller for a three-axis high-Q MEMS accelerometer with simultaneous electrostatic damping

L.CIOTIRCA, O.BERNAL, J.ENJALBERT, T.CASSAGNES, H.TAP, H.BEAULATON, S.SAHIN

OSE, NXP -Semiconductors, ENSEEIHT

Revue Scientifique : IEEE Sensors Journal, Vol.18, N°15, pp.6106-6114, Août 2018 , N° 18298

Lien : https://hal.archives-ouvertes.fr/hal-01872373

Diffusable

Plus d'informations

Abstract

Over the past years, cutting-edge advances in electronics and microfabrication have allowed the integration of multiple sensors within integrated analog and digital circuits to design Micro Electro Mechanical Systems (MEMS). The multiple sensor integration or sensor fusion, enables both cost and surface reduction, while maintaining high performances. This paper presents a new control system for an underdamped three-axis accelerometer, which allows the co-integration in the same cavity with a three-axis Coriolis gyroscope, to design a Six Degrees of Freedom (DoF) combo sensor. The accelerometer Analog Front End (AFE) consumes from a. power supply and is able to reach its steady state in compared to a open-loop and no damping configuration. The transducer control is implemented using a simultaneous multirate electrostatic damping method. To conclude on the closed loop system stability, an innovative approach, based on the multirate signal processing, theory has been developed.

144715
18173
06/07/2018

Optics at the service of geoscience: high-precision fiber interferometer development for applications in geophysics and industry

HC.SEAT, M.CATTOEN, O.BERNAL, F.LIZION, G.RAVET, L.MICHAUT, J.CHERY, F.BOUDIN, P.BERNARD, C.BRUNET, P.CHAWAH, G.PLANTIER, A.SOURICE, S.GAFFET, D.BOYER, A.CAVAILLOU

OSE, IDEA, Geoscience, CNRS, ENS Paris, IPGP, LAUM, LSBB, CNRS

Manifestation avec acte : Congrès Optique ( OPTIQUE ) 2018 du 03 juillet au 06 juillet 2018, Toulouse (France), Juillet 2018 , N° 18173

Lien : https://hal.archives-ouvertes.fr/hal-01821112

Diffusable

143921
18399
01/05/2018

Visualization of an acoustic stationary wave by optical feedback interferometry

PF.URGILES ORTIZ, J.PERCHOUX, A.LUNA ARRIAGA, F.JAYAT, T.BOSCH

OSE, I2C

Revue Scientifique : Optical Engineering, Mai 2018 , N° 18399

Lien : https://hal.laas.fr/hal-01939780

Diffusable

Plus d'informations

Abstract

This paper presents an experimental technique for two-dimensional imaging of dynamic acoustic pressure changes that is applied to visualize a stationary acoustic wave. This technique uses the optical feedback interferometry sensing scheme with a near-infrared laser diode and a two-axis scanning system. The stationary acoustic wave is generated by using a 40 kHz piezoelectric transducer pointing toward a concave acoustic reflector. The acoustic pressure dynamic changes are measured due to its impact on the propagating medium refractive index, which variation is integrated along the laser optical path from the laser diode to a distant mirror and back. The imaging system records a 100×50  pixels image of the acoustic pressure in 66 min.

145435
18027
02/03/2018

Comprehensive modeling of multimode fiber sensors for refractive index measurement and experimental validation

H.APRIYANTO, G.RAVET, O.BERNAL, M.CATTOEN, HC.SEAT, V.CHAVAGNAC, F.SURRE, J.H.SHARP

OSE, GET- UMR 5563, City University, Glasgow

Rapport LAAS N°18027, Mars 2018, 11p.

Non diffusable

142554
18016
08/02/2018

Optical feedback flowmetry: Impact of particle concentration on the signal processing method

R.ATASHKHOOEI, E.E.RAMIREZ MIQUET, R.DA COSTA MOREIRA, A.QUOTB, S.ROYO, J.PERCHOUX

UPC, MPQ, OSE

Revue Scientifique : IEEE Sensors Journal, Vol.18, N°4, pp.1457-1463, Février 2018 , N° 18016

Lien : https://hal.archives-ouvertes.fr/hal-01685176

Diffusable

Plus d'informations

Abstract

Optical feedback interferometry (OFI) based flowmetry enables simple, robust, self-aligned and low cost systems to measure the fluid flow velocity with reasonable accuracy. The particle concentration in the fluid causes significant changes in the signal of OFI sensors. While the spectral analysis of the particle induced Doppler shift remains as the most usual approach to determine the flow properties, different processing algorithms have been proposed in order to evaluate the average flow velocity within the measurement volume. In this paper, the validity of the commonly used methods with regards to particle concentrations and flow rates is verified.

142333
17383
15/11/2017

Analysis and implementation of a direct phase unwrapping method for displacement measurement using self-mixing interferometry

A.EHTESHAM, U.ZABIT, O.BERNAL, G.RAJA, T.BOSCH

Riphah, OSE, UETTAXILA

Revue Scientifique : IEEE Sensors Journal, Vol.17, N°22, pp.7425-7432, Novembre 2017, DOI 10.1109/JSEN.2017.2758440 , N° 17383

Lien : https://hal.archives-ouvertes.fr/hal-01617743

Diffusable

Plus d'informations

Abstract

Self-Mixing (SM) or optical feedback interferometry has been widely used for displacement and velocity measurement applications. For metric information retrieval with < λ/2 precision, various phase unwrapping methods have been proposed. However, these are computationally heavy and require large number of hardware resources, thereby hindering the development of real-time, embedded solutions for large bandwidth applications. In this regard, a simple and efficient feedback phase retrieval algorithm, called Consecutive Samples based Unwrapping (CSU) is presented. Detailed analysis of its error performance has been conducted as a function of key optical feedback parameters. A theoretical study has also been conducted to explain as to why such good error performance is obtained for such a simple algorithm by establishing a linear relation between the modulated laser power signal and the laser phase in the absence of optical feedback for specific ranges of key optical feedback parameters. We applied CSU on various simulated and experimentally acquired signals using SMI for the retrieval of harmonic and arbitrary displacements and found out that CSU retrieves target displacement with a precision of about λ/10 while consuming much less time and hardware resources. The paper also presents FPGA based hardware design results of CSU and compares its performance with a traditional analytical phase unwrapping method in terms of maximum clock frequency, latency, and on-chip hardware resources. This hardware comparison strongly establishes the advantages of such a fast and computationally light algorithm, readily suitable for large bandwidth, embedded, real-time sensing applications.

141316
17517
01/11/2017

Optical feedback interferometry for raster scan profilometry

B.GRIMALDI, A.LUNA ARRIAGA, F.BONY, C.TRONCHE, J.PERCHOUX

OSE, I2C

Manifestation avec acte : IEEE SENSORS 2017 du 31 octobre au 01 novembre 2017, Glasgow (Ecosse), Novembre 2017, 3p. , N° 17517

Lien : https://hal.archives-ouvertes.fr/hal-01685167

Diffusable

Plus d'informations

Abstract

This paper evaluates optical feedback interferome-try for raster scan profilometry applications. It is shown both experimentally and theoretically that the spot size on target plays a major role as the phase distribution of the scattering contributions impacts drastically the sensor signal.

142355
17529
01/11/2017

Single nano-particle flow detection and velocimetry using Optical Feedback Interferometry

R.DA COSTA MOREIRA, J.PERCHOUX, Y.ZHAO, C.TRONCHE, F.JAYAT, T.BOSCH

OSE, MICA, I2C

Manifestation avec acte : IEEE SENSORS 2017 du 31 octobre au 01 novembre 2017, Glasgow (Ecosse), Novembre 2017, 3p. , N° 17529

Lien : https://hal.archives-ouvertes.fr/hal-01685162

Diffusable

Plus d'informations

Abstract

We present a sensing technique based on the Optical Feedback Interferometry (OFI) scheme in a laser diode that enables single particle detection at micro and nano-scales through the Doppler-Fizeau effect. Thanks to the proposed signal processing, this sensing technique can detect the presence of single spherical micro/nanoparticles and measure their velocity, even while their diameter is below half the laser wavelength. The method was validated with polystyrene spheres with diameter ranging from 196 nm to 10.14 µm flowing in diluted aqueous solutions. These results indicate potential applications for the biomedical and chemical engineering fields

142466
17352
28/09/2017

Optical feedbacksensinginmicrofluidics:designandcharacterizationof VCSEL-based compactsystems

Y.ZHAO

MICA, OSE

Doctorat : INSA de Toulouse, 28 Septembre 2017, 151p., Président: A.HUMEAU-HEURTIER, Rapporteurs: P.DEBERNARDI, S.ROYO, Examinateurs: M.NORGIA, Directeurs de thèse: V.BARDINAL DELAGNE, J.PERCHOUX , N° 17352

Lien : https://tel.archives-ouvertes.fr/tel-01823859

Diffusable

Plus d'informations

Résumé

L’interférométrie par retro-injection optique (OFI) est une technique de détection émergente pour les systèmes fluidiques. Son principe est basé sur la modulation de la puissance et/ou de la tension de polarisation d’une diode laser induites par interférence entre le faisceau propre de la cavité laser et la lumière réfléchie ou rétro-diffusée par une cible distante. Grâce à l’effet Doppler, cette technique permet de mesurer précisément la vitesse de particules en mouvement dans un fluide, et de répondre aux besoins croissants de mesure de débit dans les systèmes d’analyse biomédicale ou chimique. Dans cette thèse, les performances de la vélocimétrie par rétro-injection optique sont étudiées théoriquement et expérimentalement pour le cas de micro-canaux fluidiques. Un nouveau modèle numérique multi-physique (optique, optoélectronique et fluidique) est développé pour reproduire les spectres Doppler expérimentaux. En particulier, les effets de la concentration en particules, de la distribution angulaire de la diffusion du laser par les particules, ainsi que du profil d’écoulement dans le canal sont pris en compte. Un bon accord est obtenu entre les vitesses d’écoulement théoriques et expérimentales. Ce modèle est également appliqué avec succès à la mesure de la vitesse locale dans un micro-canal et à l’analyse de l’impact sur le signal des configurations particulières de canal. Enfin, la conception d’un capteur OFI tirant parti des avantages des Lasers à Cavité Verticale à Emission par la Surface (VCSEL) est proposée. Grâce au développement de techniques de microfabrication à base de matériaux polymères, un premier démonstrateur composé d’un VCSEL à lentille intégrée est réalisé et testé sans aucune optique macroscopique additionnelle. Les résultats obtenus en termes de mesure de flux sur des canaux micro-fluidiques de tailles différentes valident l’intérêt de cette approche et ouvrent la voie vers la réalisation de capteurs OFI ultra-compacts.

Abstract

Optical feedback interferometry (OFI) is an emerging sensing technique which has been studied in fluidic systems. This sensing scheme is based on the modulation of the laser emission output power and/or the junction voltage induced by the interaction between the back-scattered light from a distant target and the laser inner cavity light. Thanks to the Doppler Effect, OFI can precisely measure the velocity of seeding particles in flowing liquids which is much required in chemical engineering and biomedical fields. In the present thesis, optical feedback interferometry performance for microscale flow sensing is studied theoretically and experimentally. A new numerical modeling approach based on multi-physics numerical simulations for OFI signal simulation in the micro-scale flowmetry configuration is presented that highlight the sensor performances. In this model, many factors are involved such as particle concentration and laser-particle scattering angle distribution and flow velocity distribution. The flow rate measurement shows good agreement with the modeling. The implementation of OFI based sensors in multiple fluidic systems, investigating the impact of the fluidic chip specific configuration on the sensor signal. Finally, a compact OFI flowmetry sensor based on Vertical-Cavity Surface-Emitting Lasers (VCSELs) using micro optical fabrication techniques is demonstrated as well. The simulation method for the design and the microfabrication procedures are detailed. After an evaluation of the experimental results, the capabilities of this new OFI sensor in microfluidic measurements are emphasized, thus demonstrating an open path towards ultra-compact microfluidic systems based on the OFI sensing technique.

Mots-Clés / Keywords
Optical feedback interferometry; VCSEL; Microfluidics; Flow measurement; Doppler effect; Interférométrie par réinjection optique; Micro-fluidique; Mesure de débit; Effet doppler;

141153
Les informations recueillies font l’objet d’un traitement informatique destiné à des statistiques d'utilisation du formulaire de recherche dans la base de données des publications scientifiques. Les destinataires des données sont : le service de documentation du LAAS.Conformément à la loi « informatique et libertés » du 6 janvier 1978 modifiée en 2004, vous bénéficiez d’un droit d’accès et de rectification aux informations qui vous concernent, que vous pouvez exercer en vous adressant à
Pour recevoir une copie des documents, contacter doc@laas.fr en mentionnant le n° de rapport LAAS et votre adresse postale. Signalez tout problème de dysfonctionnement à sysadmin@laas.fr. http://www.laas.fr/pulman/pulman-isens/web/app.php/