Retour au site du LAAS-CNRS

Laboratoire d’analyse et d’architecture des systèmes

Publications de l'équipe MPN

Choisir la langue : FR | EN

201documents trouvés

18188
21/09/2018

Nanosecond laser defects induced in crystalline silicon annealed: identification, localization and electrical impact

R.MONFLIER, H.RIZK, T.TABATA, J.ROUL, E.IMBERNON, S.BONINELLI, M.ITALIA, A.LA MAGNA, F.MAZZAMUTO, P.ACOSTA ALBA, S.KERDILES, F.CRISTIANO

MPN, SCREEN-LASSE, I2C, TEAM, CNR-IMM, Catania, CEA-LETI

Manifestation avec acte : International Conference on Ion Implantation Technology ( IIT ) 2018 du 16 septembre au 21 septembre 2018, Wurzburg (Allemagne), Septembre 2018, 1p. , N° 18188

Lien : https://hal.laas.fr/hal-01803955

Diffusable

Plus d'informations

Abstract

Laser Thermal Annealing (LTA) in conjunction with ion implantation has been demonstrated to be a very effective method to achieve heavily doped and localized regions needed in both advanced MOSFET and solar cells technology. In some cases, degradation of the electrical properties of the laser doped regions has been reported, including increased leakage current in p-n junctions, reduced carrier mobility and breakdown voltage shift in MOS transistors or reduced carrier lifetime in solar cells, which are attributed to laser-induced damage, including impurity penetration during anneal or point defect generation during melt recrystallization. In this work, we present a comprehensive investigation of laser induced damage by implementing a methodology allowing the identification and the localization of the defects as well as the investigation of their impact on the properties of the annealed regions.

144021
18168
05/06/2018

Self-Aligned Functionalization Approach to Order Neuronal Networks at the Single-Cell Level

A.CASANOVA, MC.BLATCHE, C.FERRE, H.MARTIN, D.GONZALES DUNIA, L.NICU, G.LARRIEU

MPN, I2C, INSERM, MEMS

Revue Scientifique : Langmuir, Vol.34, N°22, pp.6612-6620, Juin 2018 , N° 18168

Lien : https://hal.laas.fr/hal-01816434

Diffusable

Plus d'informations

Abstract

Despite significant progress, our knowledge of the functioning of the central nervous system still remains scarce to date. A better understanding of its behavior, in either normal or diseased conditions, goes through an increased knowledge of basic mechanisms involved in neuronal function, including at the single-cell level. This has motivated significant efforts for the development of miniaturized sensing devices to monitor neuronal activity with high spatial and signal resolution. One of the main challenges remaining to be addressed in this domain is, however, the ability to create in vitro spatially ordered neuronal networks at low density with a precise control of the cell location to ensure proper monitoring of the activity of a defined set of neurons. Here, we present a novel self-aligned chemical functionalization method, based on a repellant surface with patterned attractive areas, which permits the elaboration of low-density neuronal network down to individual cells with a high control of the soma location and axonal growth. This approach is compatible with complementary metal-oxide–semiconductor line technology at a wafer scale and allows performing the cell culture on packaged chip outside microelectronics facilities. Rat cortical neurons were cultured on such patterned surfaces for over one month and displayed a very high degree of organization in large networks. Indeed, more than 90% of the network nodes were settled by a soma and 100% of the connecting lines were occupied by a neurite, with a very good selectivity (low parasitic cell connections). After optimization, networks composed of 75% of unicellular nodes were obtained, together with a control at the micron scale of the location of the somas. Finally, we demonstrated that the dendritic neuronal growth was guided by the surface functionalization, even when micrometer scale topologies were encountered and we succeeded to control the extension growth along one-dimensional-aligned nanostructures with sub-micrometrical scale precision. This novel approach now opens the way for precise monitoring of neuronal network activity at the single-cell level.

143896
18129
28/05/2018

Nanoscale measurements of phosphorous-induced lattice expansion in nanosecond laser annealed germanium

S.BONINELLI, R.MILAZZO, R.CARLES, F.HOUDELLIER, R.DUFFY, K.HUET, A.LA MAGNA, E.NAPOLITANI, F.CRISTIANO

CNR-IMM, Catania, University of Padova, CEMES/CNRS, Tyndall, SCREEN-LASSE, MPN

Revue Scientifique : APL Materials, Vol.6, N°5, 058504p., Mai 2018 , N° 18129

Lien : https://hal.archives-ouvertes.fr/hal-01796115

Diffusable

Plus d'informations

Abstract

Laser Thermal Annealing (LTA) at various energy densities was used to recrystallize and activate amorphized germanium doped with phosphorous by ion implantation. The structural modifications induced during the recrystallization and the related dopant diffusion were first investigated. After LTA at low energy densities, the P electrical activation was poor while the dopant distribution was mainly localized in the poly- crystalline Ge resulting from the anneal. Conversely, full dopant activation (up to 1 × 10 20 cm 3 ) in a perfectly recrystallized material was observed after annealing at higher energy densities. Measurements of lattice parameters performed on the fully activated structures show that P doping results in a lattice expansion, with a perpen- dicular lattice strain per atom β Ps = +0.7 ± 0.1 Å 3 . This clearly indicates that, despite the small atomic radius of P compared to Ge, the “electronic contribution” to the lattice parameter modification (due to the increased hydrostatic deformation potential in the conduction band of P doped Ge) is larger than the “size mismatch contribu- tion” associated with the atomic radii. Such behavior, predicted by theory, is observed experimentally for the first time, thanks to the high sensitivity of the measurement techniques used in this work

143594
18066
01/04/2018

Computational fluid dynamics simulation of the ALD of alumina from TMA and H2O in a commercial reactor

G.P.GAKIS, H.VERGNES, E.SCHEID, C.VAHLAS, B.CAUSSAT, A.BOUDOUVIS

LGC, MPN, CIRIMAT, NTUA

Revue Scientifique : Chemical Engineering Research and Design: Transactions of the Institution of Chemical Engineers Part A, Vol.132, pp.795-811, Avril 2018 , N° 18066

Lien : https://hal.archives-ouvertes.fr/hal-01730196

Diffusable

Plus d'informations

Abstract

A three-dimensional Computational Fluid Dynamics model is built for a commercial Atomic Layer Deposition (ALD) reactor, designed to treat large area 20 cm substrates. The model aims to investigate the effect of the reactor geometry and process parameters on the gas flow and temperature fields, and on the species distribution on the heated substrate surface, for the deposition of Al2O3 films from trimethyl aluminum and H2O. The investigation is performed in transient conditions, without considering any surface reaction. A second CFD model is developed for the feeding system of the reactor, in order to calculate the unknown reactant inlet flow rates. The two models are coupled via a computational strategy dictated by the available experimental measurements. Results show that a purging flow entering the reactor through its loading door affects the flow field above the substrate surface and causes non-uniformity in the temperature and reactants concentration on the substrate surface. During the TMA pulse, a recirculation sets in above the substrate surface, leading to a non-uniform distribution of species on the surface.

142837
18073
21/03/2018

Dopant Activation in Ultra-thin SiGeOI and SOI layers characterised by Differential Hall Effect

R.DAUBRIAC, E.SCHEID, S.JOBLOT, R.BENEYTON, P.ACOSTA ALBA, S.KERDILES, F.CRISTIANO

MPN, ST Microelectronics, CEA-LETI

Manifestation avec acte : Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon ( EUROSOI-ULIS ) 2018 du 19 mars au 21 mars 2018, Grenade (Espagne), Mars 2018, 2p. , N° 18073

Lien : https://hal.laas.fr/hal-01735436

Diffusable

Plus d'informations

Abstract

The reduction of the contact resistance RC is one of the most challenging issues related to the miniaturisation of advanced MOSFET architectures, including FDSOI technology (Fully Depleted Silicon-On-Insulator). RC strongly depends on the active dopant concentration at the semiconductor/salicide interface. It is therefore essential that electrical activation at different depths within a doped layer is reliably determined to optimise the fabrication processes. In this paper, we firstly present a Differential Hall Effect (DHE) method which allows measuring the active dopant concentration profile close to the surface with nm resolution for ultra-shallow doped Si1-xGex and Si layers. Then, we present DHE measurements made on junctions processed with advanced techniques, including nsec LTA and msec DSA anneals.

142935
18068
14/03/2018

A Differential Hall Effect method with sub-nanometre resolution for active dopant concentration profiling in ultra-thin Si 1-x Ge x and Si doped layers

R.DAUBRIAC, E.SCHEID, S.JOBLOT, R.BENEYTON, P.ACOSTA ALBA, S.KERDILES, F.CRISTIANO

MPN, ST Microelectronics, CEA-LETI

Rapport LAAS N°18068, Mars 2018, 34p.

Lien : https://hal.laas.fr/hal-01730674

Diffusable

Plus d'informations

Abstract

In this paper, we present an enhanced Differential Hall Effect method (DHE) for Si and SiGe ultrathin layers for the investigation of dopant activation in the surface region with sub-nanometre resolution. In the case of SiGe case, which constitutes the most challenging process, we show the reliability of the SC1 chemical solution (NH4OH:H2O2:H2O) thanks to its slow etch rate, stoichiometry conservation and low roughness generation. The reliability of a complete DHE procedure, with an etching step as small as 0.5 nm, is demonstrated on a dedicated 20 nm-thick SiGe test structure fabricated by CVD and uniformly doped in situ during growth. The developed method is finally applied to the investigation of dopant activation achieved by advanced annealing methods (including millisecond and nanosecond laser anneal) in two material systems: 6 nm-thick SiGeOI and 11 nm-thick SOI. In both cases, DHE is shown to be a unique sensitive characterisation technique for a detailed investigation of dopant activation in ultra-shallow layers, providing sub-nm resolution for both dopant concentration and carrier mobility depth profiles.

142839
18046
09/03/2018

Ballistic Majorana nanowire devices

O.GUL, H.ZHANG, J.BOMMER, M.DE MOOR, D.CAR, E.P.A.M.BAKKERS, S.PLISSARD, A.GERESDI, K.WATANABE, T.TANIGUCHI, L.P.KOUWENHOVEN

Delft, Eindhoven, MPN, NIMS, Tsukuba

Revue Scientifique : Nature Nanotechnology, Vol.13, N°3, pp.192-197, Mars 2018 , N° 18046

Lien : https://hal.laas.fr/hal-01712989

Diffusable

Plus d'informations

Abstract

Majorana modes are zero-energy excitations of a topological superconductor that exhibit non- Abelian statistics 1–3 . Following proposals for their detection in a semiconductor nanowire cou- pled to an s-wave superconductor 4,5 , several tun- neling experiments reported characteristic Majo- rana signatures 6–11 . Reducing disorder has been a prime challenge for these experiments because disorder can mimic the zero-energy signatures of Majoranas 12–16 , and renders the topological prop- erties inaccessible 17–20 . Here, we show character- istic Majorana signatures in InSb nanowire de- vices exhibiting clear ballistic transport proper- ties. Application of a magnetic field and spatial control of carrier density using local gates gen- erates a zero bias peak that is rigid over a large region in the parameter space of chemical poten- tial, Zeeman energy, and tunnel barrier potential. The reduction of disorder allows us to resolve sep- arate regions in the parameter space with and without a zero bias peak, indicating topologically distinct phases. These observations are consistent with the Majorana theory in a ballistic system 21 , and exclude for the first time the known alter- native explanations that invoke disorder 12–16 or a nonuniform chemical potential

142690
17614
08/12/2017

Tampon graduel et jonction tunnel de type II relaxés sur GaAs pour sous­ cellules solaires métamorphiques à 1 eV

K.LOUARN, C.FONTAINE, A.ARNOULT, Y.CLAVEAU, L.MARIGO-LOMBART, I.MASSIOT, J.COLIN, C.CORNILLE, E.LEITE, L.LOMBEZ, N.CAVASSILAS, F.PIQUEMAL, A.BOUNOUH, G.ALMUNEAU

PHOTO, TEAM, IM2NP, MPN, IRDEP, LNE, CEA LIST

Manifestation avec acte : Journées Nationales du Photovoltaïque ( JNPV ) 2017 du 05 décembre au 08 décembre 2017, Dourdan (France), Décembre 2017, pp.668-676 , N° 17614

Lien : https://hal.laas.fr/hal-01780593

Diffusable

Plus d'informations

Abstract

La technologie des cellules solaires tandem (MJSCs) GaAs (1.42 eV)/GaInP (1.87 eV) sur substrat GaAs est très mature, et l'ajout de sous­cellules solaires de plus petit gap à cette structure bien maîtrisée a permis d'obtenir de très hauts rendements au­delà de 40 %. Les alliages GaInAsN accordés sur GaAs (rendement de 43.5% [1]), GaInAs métamorphique (rendement de 44.4 % [2]) ainsi que le collage par "wafer­bonding" de sous­cellules fabriquées sur InP (rendement de 46% [2]) ont jusqu'ici été exploités. Dans l'optique de dépasser cette valeur record dans des cellules solaires métamorphiques, la maîtrise d'un matériau à 1 eV ayant de bonnes propriétés structurales et optoélectroniques est indispensable, et constitue un défi majeur pour la filière des MJSCs sur substrat GaAs. Nous visons à exploiter un alliage GaAsBi, avec une concentration de bismuth de 7%. En effet, cet alliage présente un désaccord de maille avec le GaAs plus faible (0.6%) que l'alliage Ga 0.69 In 0.31 As (2.2%) pour atteindre 1eV. De ce fait, la couche graduelle métamorphique AlGaInAs élaborée avant l'absorbeur 1eV qui ne contiendra que 15% d'indium au lieu de 35%, pourra être plus fine et sera de meilleure qualité structurale. Pour encore améliorer les performances de ces sous­cellules, il est aussi nécessaire de disposer de jonctions tunnel (JT) de hautes performances permettant la connexion électrique entre les sous­cellules [3]. Nous proposons ici une géométrie originale de JT et présentons les résultats obtenus. Nous démontrons la fabrication par Epitaxie par Jets Moléculaires (EJM) d'une JT AlGaInAs/AlGaAsSb hautes performances intégrée au tampon graduel relaxé réalisant l'accord de maille du GaAsBi (xBi =7%), comme présenté sur la Figure 1. Cette solution a été développée à partir d'un travail expérimental et théorique autour des hétérojonctions tunnel de type II GaAsSb/GaInAs, qui sera donc aussi détaillé. Comme preuves de concept, la croissance de cellules solaires métamorphiques GaInAs (x In =11%) (1.25 eV) et GaAsSbN (1 eV) a été réalisée et les composants sont en cours de fabrication. Les premiers résultats obtenus sur ces composants seront discutés. Références: [1] Sabnis, V., Yuen, H., Wiemer, M. (2012,). High­efficiency multijunction solar cells employing dilute nitrides.

143439
17633
06/12/2017

Integration of FinFETs and 3D nanoprobes devices on a common bio-platform for monitoring electrical activity of single neurons

A.CASANOVA, MC.BLATCHE, F.MATHIEU, L.BETTAMIN, H.MARTIN, D.GONZALEZ-DUNIA, L.NICU, G.LARRIEU

MPN, I2C, INSERM, MEMS

Manifestation avec acte : International Electron Devices Meeting ( IEDM ) 2017 du 02 décembre au 06 décembre 2017, San Francisco (USA), Décembre 2017 , N° 17633

Lien : https://hal.laas.fr/hal-01816371

Diffusable

Plus d'informations

Abstract

Our knowledge of the functioning of the central nervous system still remains scarce to date. A better understanding of its behavior, in either normal or diseased conditions, goes through an increased knowledge of basic mechanisms involved in neuronal function, including at the single cell resolution. In that scope, the miniaturization of electronic components and emergence of nano-biotechnology open new perspectives to follow neuronal activities at the single cell level. Here, we propose to co-integrate very high surface-to-volume ratio active (Fin-FETs) and passive devices (vertical nanowire-probes) on the same platform to monitor electrical activity of single mammalian neurons. Very high signal noise ratio has been demonstrated, especially in intracellular configuration (up to 80). The bio-platform was used to examine the effect of bio-chemical and electrical stimulations on neuronal activity.

143900
17238
01/12/2017

Evaluating depth distribution of excimer laser induced defects in silicon using micro-photoluminescence spectroscopy

R.MONFLIER, T.TABATA, M.TURPIN, A.BENYOUCEF, F.CRISTIANO, K.HUET, F.MAZZAMUTO, A.LA MAGNA, S.LOMBARDO, J.ROUL, E.BEDEL-PEREIRA

MPN, SCREEN-LASSE, CNR-IMM, Catania, I2C

Manifestation avec acte : MRS Fall Meeting 2017 du 26 novembre au 01 décembre 2017, Boston (USA), Décembre 2017, 1p. , N° 17238

Lien : https://hal.archives-ouvertes.fr/hal-01555348

Diffusable

Plus d'informations

Abstract

Laser Thermal Annealing (LTA) has been demonstrated to be an effective method to create heavily doped regions required for ultra-shallow junctions, in which dopants are typically introduced by ion implantation. More generally, laser annealing is very attractive due to the localised nature of the annealing process (both on the wafer surface and in depth), allowing dopants to be activated while preserving the integrity of the surrounding areas. Similarly, it is generally accepted that the laser induced damage, if any, is also localised and is reduced when using ultrashort pulses. However, the depth distribution of the laser induced damage has been rarely investigated in detail, with few works reporting on the subsurface doping and damage in laser-doped Si solar cells [1, 2].

141632
Les informations recueillies font l’objet d’un traitement informatique destiné à des statistiques d'utilisation du formulaire de recherche dans la base de données des publications scientifiques. Les destinataires des données sont : le service de documentation du LAAS.Conformément à la loi « informatique et libertés » du 6 janvier 1978 modifiée en 2004, vous bénéficiez d’un droit d’accès et de rectification aux informations qui vous concernent, que vous pouvez exercer en vous adressant à
Pour recevoir une copie des documents, contacter doc@laas.fr en mentionnant le n° de rapport LAAS et votre adresse postale. Signalez tout problème de dysfonctionnement à sysadmin@laas.fr. http://www.laas.fr/pulman/pulman-isens/web/app.php/