Retour au site du LAAS-CNRS

Laboratoire d’analyse et d’architecture des systèmes

Publications de l'équipe MEMS

Choisir la langue : FR | EN

84documents trouvés

17689
22/01/2019

Ionic Electrochemical Actuators

A.MAZIZ, A.SIMAITE, C.BERGAUD

MEMS

Ouvrage (contribution) : Polymerized Ionic Liquids, Royal Society of Chemistry, N°ISBN 978-1-78262-960-3, Janvier 2019, Chapter 16, pp.456-488 , N° 17689

Lien : https://hal.laas.fr/hal-01976995

Diffusable

Plus d'informations

Abstract

Ionic electroactive polymer (iEAP) actuators with ionic liquid (IL) electrolytes are distinguished by their ability to operate in ambient air with an enhanced lifetime. This chapter reports the developments in iEAP actuator technologies for several applications, with a particular focus on the use of conducting polymers (CPs). CPs have attracted attention because of their promising electronic, optical and electromechanical properties. These smart materials are characterized by their possible dimensional changes due to the migration or diffusion of ions upon electrochemical oxidation or reduction processes. In an adequate ionic conducting medium, CPs can be used as the active component in actuators and lead to interesting potential applications, including soft robotics, prosthetic devices, microsystems and medical devices. This chapter starts with an overview of existing iEAP actuators. CP actuation mechanisms and configurations are explained in detail, and existing and potential applications are discussed, emphasizing the benefits of using ionic liquids (high ionic conductivity, non-volatility, larger electrochemical window and biocompatibility). Finally, to conclude, the future developments and challenges in this area are discussed.

146155
18463
05/12/2018

Comprehensive optical losses investigation of VLSI Silicon optomechanical ring resonator sensors

L.SCHWAB, P.ALLAIN, L.BANNIARD, A.FAFIN, M.GELY, O.LEMONNIER, P.GROSSE, M.HERMOUET, S.HENTZ, I.FAVERO, B.LEGRAND, G.JOURDAN

MEMS, MPQ, CEA-LETI

Manifestation avec acte : International Electron Devices Meeting ( IEDM ) 2018 du 01 décembre au 05 décembre 2018, San Francisco (USA), Décembre 2018 , N° 18463

Lien : https://hal.laas.fr/hal-01963015

Diffusable

Plus d'informations

Abstract

Cavity optomechanics devices are leading edge candidates for a new generation of sensors both in the quantum and classical realms. Several single devices have been demonstrated in numerous labs, however large-scale integration capability necessary for industrial deployment is still an issue. In this paper, we present very-large-scale integrated (VLSI) optomechanical sensors fabricated from standard 200 mm Silicon-On-Insulator (SOI) wafers. Optical properties over a statistically significant sample size have been systematically investigated and show an excellent modeling to experiment agreement, a coupling parameter dispersion of 7% and a manufacturing yield larger than 98%. Controlled versatile sensors, such as these, could easily be embedded in any chip where mass or force sensing is needed.

145933
18342
09/11/2018

Optomechanical Resonating Probe for Very High Speed Sensing of Atomic Forces

P.ALLAIN, L.SCHWAB, C.MISNER, M.GELY, E.MAIRIAUX, M.HERMOUET, B.WALTER, G.LEO, S.HENTZ, M.FAUCHER, G.JOURDAN, B.LEGRAND, I.FAVERO

MPQ, MEMS, IEMN, CEA-LETI, VMICRO Sas, Paris Diderot, IEMN Villeneuve

Rapport LAAS N°18342, Novembre 2018, 14p.

Lien : https://hal.laas.fr/hal-01908683

Diffusable

Plus d'informations

Abstract

Atomic force spectroscopy and microscopy (AFM) are invaluable tools to characterize nanostructures and biological systems . Most experiments, including state -­‐ of -­‐ the -­‐ art images of molecular bonds, are achieved by driving probe s at their mechanical resonance . This resonance reaches the MHz for the fastest AFM micro -­‐ cantilevers , with typical motion amplitude of a few nanomet re s . Next -­‐ generation investigation s of molecular scale dynamics, including faster force imaging and high er -­‐ resolution spectroscopy of dissipative interactions, require more bandwidth and vibration amplitude s below in t er atomic distance , for non -­‐ pertu r bative short -­‐ range tip -­‐ matter interactions . Probe frequency is a key parameter to improve bandwidth while reducing Brownian motion , allowing large signal -­‐ to -­‐ noise for exquisite resolution . O ptomechanical resonators reach motion detection at 10 -­‐ 18 m.Hz -­‐ 1/2 , while coupling light to bulk vibration modes whose frequencies largely surpass those of cantilevers . Here we introduce a n optically operated resonating optomechanical atomic force probe of frequency 2 decades above the fastest functional AFM cantilevers while Brownian motion is 4 orders below. B ased on a Silicon -­‐ On -­‐ Insulator technology, the probe demonstrates high -­‐ speed sensing of contact and non -­‐ contact interactions with sub -­‐ picomet r e driven motion, breaking open current locks for faster and finer atomic force spectroscopy .

145036
18506
01/11/2018

Tuning the properties of silk fibroin biomaterial via chemical cross-linking

A.MAZIZ, O.LEPRETTE, L.BOYER, MC.BLATCHE, C.BERGAUD

MEMS, I2C

Revue Scientifique : Biomedical Physics & Engineering Express, Vol.4, N°6, 065012p., Novembre 2018 , N° 18506

Lien : https://hal.laas.fr/hal-01974627

Diffusable

Plus d'informations

Abstract

Protein-based biomaterials with innovative and controlled performance are being sought due to their unique characteristics for use in biomedical fields such as neural implants, drug delivery systems, cell-based therapies and soft tissue engineering. Here, we present a versatile approach for the synthesis of photo-crosslinkable fibroin silk biomaterial with highly tunable mechanical, chemical and biodegradation properties. Unlike the crystalline rich silk fibroin reported previously, the covalently cross-linked fibroin protein photoresist (FPP) via controlled light-induced radical grafting, allows generating a new amorphous biomaterial with tunable properties. It appears that the use of photo-reactive acrylate groups to cross-link FPP induces plasticity that can be tuned by changing the photoinitiator concentration of the film. Tensile strength measurements revealed that elasticity was higher for FPP UV-cross-linked materials with higher concentration of photoinitiator. FTIR and relative humidity measurements showed that hydrophilicity was higher for UV-cross-linked FPP. These materials display stiffness between 0.01–1.5 GPa and tensile strains up to 60%, covering a significant portion of the properties of native soft biomaterials. Besides, in vitro proteolytic degradation of the photocrosslinked FPP films demonstrate a tunable degradation rate over a period ranging from hours to weeks. Those biomaterials have been successfully micropatterned by photolithography techniques across several orders of magnitude (μm to cm) and a systematic study of direct patterning of the fibroin protein to form high fidelity and high-resolution structures has been reported. It was also shown that the fabricated protein features are well suited to cell adhesion. The development of protein-based material with controlled and tunable elasticity that can be easily photo-patterned into centimeter, micrometer and nanometer components will allow a wide range of applications in biomedical fields requesting a natural functional tissue.

146131
18468
01/11/2018

Microfluidics for minute DNA sample analysis: open challenges for genetic testing of cell-free circulating DNA in blood plasma

R.MALBEC, J.CACHEUX, P.CORDELIER, T.LEICHLE, P.JOSEPH, A.BANCAUD

MICA, MEMS, CRCT-INSERM, MILE

Revue Scientifique : Micro and Nano Engineering, Vol.1, pp.25-32, Novembre 2018 , N° 18468

Lien : https://hal.archives-ouvertes.fr/hal-01997320

Diffusable

Plus d'informations

Abstract

Genetic testing based on the analysis of circulating cell-free DNA (cfDNA) in body fluids, especially blood plasma, is raising interest for the management and follow-up of many diseases, including cancer. Because the concentration of cfDNA is low and its composition mostly degraded, this material can only be assayed with the most sensitive nucleic acid processing technologies. cfDNA analysis therefore constitutes a model target and a driving force for innovation in microfluidic biotechnologies. Here, we overview the main physico-chemical characteristics of cfDNA, and provide a critical review on the different methods for its processing out of blood samples. Then, we describe recent microfluidic developments for high sensitivity DNA analysis, evaluate their practical relevance for cfDNA analysis, and identify a few challenges for technologists in the near future.

145977
18465
01/11/2018

Nanofluidic fluorescence microscopy with integrated concentration gradient generation for one-shot parallel kinetic assays

P.TEERAPANICH, M.PUGNIERE, C.HENRIQUET, Y.L.LIN, A.NAILLON, P.JOSEPH, C.F.CHOU , T.LEICHLE

MEMS, IRCM, Academia Sinica, MILE

Revue Scientifique : Sensors and Actuators B: Chemical, N°274, pp.338-342, Novembre 2018 , N° 18465

Lien : https://hal.archives-ouvertes.fr/hal-01964831

Diffusable

Plus d'informations

Abstract

We report a simple and cost-effective nanofluidic fluorescence microscopy platform with parallel kinetic assay capability for the determination of kinetic parameters in a single run. An on-chip microfluidic concentration diluter, or gradient generator, was integrated to a biofunctionalized nanofluidic chip, enabling simultaneous interrogation of multiple biomolecular interactions with a full titration series of analyte in a single experiment. We demonstrate that since the association and dissociation phases are induced by the on-chip gradient generator and a reverse buffer flow operation, complete kinetic sensorgrams for IgG/anti-IgG interactions can be achieved within 20 min on a single device, which is at least 10 times faster than traditional kinetic techniques. This method could contribute to low-cost, rapid and high-throughput drug-screening and clinical diagnostics.

145965
18341
26/10/2018

MEMS-based atomic force microscopy probes: from electromechanical to optomechanical vibrating sensors

B.LEGRAND, L.SCHWAB, P.ALLAIN, I.FAVERO, M.FAUCHER, D.THERON, B.WALTER, J.P.SALVETAT, S.HENTZ, G.JOURDAN

MEMS, MPQ, Paris Diderot, IEMN Villeneuve, VMICRO Sas, CRPP, Pessac, CEA-LETI

Manifestation avec acte : AVS International Symposium & Exhibition ( AVS ) 2018 du 21 octobre au 26 octobre 2018, Long Beach (USA), Octobre 2018 , N° 18341

Lien : https://hal.laas.fr/hal-01908666

Diffusable

Plus d'informations

Abstract

Scanning probe microscopy has been one of the most important instrumental discoveries during the last quarter of the last century. In particular, atomic force microscopy (AFM) is a cross-disciplinary technique able to provide sample morphology down to the atomic scale. It offers invaluable tools to support the development of nano-sciences, information technologies, micro-nanotechnologies and nano-biology. For more than 20 years, boosting the scan rate of AFM has been an increasingly important challenge of the community. However still today, performing routine and user-friendly AFM experiments at video rate remains unreachable in most cases. The conventional AFM probe based on a micro-sized vibrating cantilever is the major obstacle in terms of bandwidth and resonance frequency. Following a brief description of the context of the work, the talk will first describe the development of AFM probes based on MEMS devices that make use of ring-shaped microresonators vibrating above 10 MHz. A focus will be dedicated to the electrical detection scheme. Based on capacitive transduction and microwave reflectometry, it achieves a displacement resolution of 1E-15 m/√Hz, allowing the measurement of the thermomechanical vibration of the MEMS AFM probes in air. Imaging capability obtained on DNA origamis samples at a frame rate greater than 1 image/s will be shown as well as investigation of block copolymer surfaces to elucidate the tip-surface interaction when vibration amplitudes are lower than 100 pm. In the following, our recent research direction at the convergence of the fields of micro/nanosystems and VLSI optomechanics on silicon chips will be presented. Optomechanical resonators allow indeed overcoming the resolution limitation imposed by usual electromechanical transduction schemes. Here, we will introduce fully optically driven and sensed optomechanical AFM probes which resonance frequency is above 100 MHz and Brownian motion below 1E-16 m/√Hz, paving the way for high-Speed AFM operation with exquisite resolutions at sub-angstrom vibration amplitudes.

145035
18327
12/10/2018

Développement d'un système autonome de détection et de quanti-cation des microARNs avec une plateforme nano/uidique pour la prise en charge du cancer du pancréas

J.CACHEUX

MEMS

Doctorat : Université de Toulouse III - Paul Sabatier, 12 Octobre 2018, 193p., Président: L.BUSCAIL, Rapporteurs: E.DELAMARCHE, I.VAN SEUNINGEN, Examinateurs: A.CARRIER, Directeurs de thèse: P.CORDELIER, T.LEICHLE , N° 18327

Lien : https://hal.laas.fr/tel-01922268

Diffusable

Plus d'informations

Abstract

85% of patients affected by pancreatic adenocarcinoma (PDA) are diagnosed at an advanced stage, preventing effective care and curative treatments. Therefore, it is urgent to identify reliable biomarkers for the early detection of disease status, including relapse. MiRNAs (micro ribonucleic acids) are biomarkers of PDA, with demonstrated clinical value for early detection of tumors and monitoring of response to treatment. However, current methods of extraction and detection of miRNA are not compatible with clinical use. New technologies derived from micro and nanofabrication methods have the potential to facilitate the implementation of diagnostic tests, by offering a high degree of portability and robustness, short time to results at low cost. Here, we propose a nanofluidic platform coupled to fluorescence detection for the real time measurement of molecular interactions in a confined environment. We first describe the detection platform via a one-dimension theoretical model based on molecular dynamics to predict the capture of miRNAs into biofunctionalized nanochannels. The originality of the system lies in the non-homogeneous hybridization of miRNA targets onto the sensor. We demonstrate that the analysis of the spatial hybridization profile enables the determination of the affinity of the captured miRNA with the probe sequence in a wash-free single step. We then show the rapid discrimination (less than 10 minutes) of single nucleotide difference (SND) using this strategy. The performance of the device in the context of pancreatic cancer detection is discussed: the effect of sample preparation of complex biofluids is studied and two labeling approaches compatible with the detection of endogenous miRNAs are described and compared, leading to the detection of miRNAs extracted from model cell cultures of pancreatic cancer.

Résumé

85% des patients atteints de cancer du pancréas présentent au diagnostic des formes avancées de la maladie qui empêchent leur prise en charge thérapeutique efficace. Il est donc urgent de mettre en évidence des marqueurs diagnostics permettant de détecter plus tôt ces cancers, mais également leur rechute, afin d’améliorer leur prise en charge. Les miARNs (micro acides ribonucléiques) sont des biomarqueurs du cancer du pancréas, présentant une valeur clinique démontrée pour la détection précoce des tumeurs et le suivi de la réponse au traitement. Cependant, les méthodes actuelles d’extraction et de détection de ces molécules ne sont pas adaptées à une utilisation clinique. Les nouvelles technologies issues des méthodes de micro et nanofabrication ont le potentiel de permettre la mise en place de tests diagnostiques, offrant un haut degré de portabilité et de robustesse, une lecture en temps réel, et à bas coût. Nous proposons ici une plateforme nanofluidique couplée à une détection en fluorescence permettant la mesure en temps réel d’interactions moléculaires en milieu hyper-confiné. Nous décrivons dans un premier temps la plateforme de détection via un modèle théorique à une dimension basé sur la dynamique moléculaire permettant de prédire la capture spécifique des miARNs dans un nanocanal fonctionnalisé. L’originalité du système réside dans une accroche non homogène des miARNs sur la surface du capteur. Ainsi, nous démontrons que l’étude du profil spatial d’hybridation engendré permet de déterminer l’affinité du miARN capturé avec la séquence sonde en une seule étape, sans lavage. Nous démontrons également l’excellente spécificité du biocapteur qui permet la discrimination rapide (moins de 10 minutes) de SND (single nucleotide difference). Les performances du dispositif pour des applications au plus près des problématiques biologiques dans le cadre de la détection du cancer du pancréas sont enfin discutées : les effets de la préparation d’échantillon types biofluides complexes sur l’extraction de miARNs sont étudiés, puis deux approches permettant la détection de miARNs endogènes sont décrites et comparées, conduisant à la détection de miARNs extraits de cultures cellulaires modèles du cancer du pancréas.

Mots-Clés / Keywords
Cancer du pancréas; microARNs; Nanofluidique; Microscopie en fluorescence; Pancreactic cancer; Nanofluidics; Fluorescence microscopy;

144935
18419
01/10/2018

Nanowire based bioprobes for electrical monitoring of electrogenic cells

A.CASANOVA, L.BETTAMIN, MC.BLATCHE, F.MATHIEU, H.MARTIN, D.GONZALEZ-DUNIA, L.NICU, G.LARRIEU

MPN, I2C, INSERM, MEMS

Revue Scientifique : Journal of Physics: Condensed Matter, Vol.30, N°46, 464001p., Octobre 2018 , N° 18419

Lien : https://hal.laas.fr/hal-01942304

Diffusable

Plus d'informations

Abstract

The continuous miniaturization of electronic components and the emergence of nano-biotechnology has opened new perspectives to monitor electrical activities at the single cell level. Here, we describe the creation of very high surface-to-volume ratio passive devices (vertical nanowire probes) using large-scale fabrication process, allowing to follow the electrical activity of mammalian neurons. Based on conventional silicon processing, the silicon nanowires were silicided in platinum in order to improve their electrochemical performances and to guarantee their biocompatibility. Very high signal to noise ratio was achieved (up to 2000) when measuring spontaneous action potentials. Moreover, this bio-platform was used to record the impact of various bio-chemical and electrical stimulations on neuronal activity. To conclude, this study proposes a thorough comparison of the characteristics and performances of these new nanowire-based nanoprobes with the main alternative systems published up to now.

145573
18616
27/09/2018

Mesoscale 3D printing with micrometric resolution

A.ACCARDO, R.COURSON, R.RIESCO ALVAREZ, V.RAIMBAULT, L.MALAQUIN

ELIA, TEAM, MEMS, MICA

Manifestation avec acte : International Conference on Micro and Nano Engineering ( MNE ) 2018 du 24 septembre au 27 septembre 2018, Copenhague (Danemark), Septembre 2018 , N° 18616

Lien : https://hal.laas.fr/hal-01886999

Diffusable

Plus d'informations

Abstract

Here, we report on a novel 3D fabrication methodology, based on single-photon photopolymerization, able to realize meso-scale 2D and 3D architectures of several mm volume size with micrometric resolution by automatically adapting laser power, writing speed and z-slicing for each area of the design.

147059
Les informations recueillies font l’objet d’un traitement informatique destiné à des statistiques d'utilisation du formulaire de recherche dans la base de données des publications scientifiques. Les destinataires des données sont : le service de documentation du LAAS.Conformément à la loi « informatique et libertés » du 6 janvier 1978 modifiée en 2004, vous bénéficiez d’un droit d’accès et de rectification aux informations qui vous concernent, que vous pouvez exercer en vous adressant à
Pour recevoir une copie des documents, contacter doc@laas.fr en mentionnant le n° de rapport LAAS et votre adresse postale. Signalez tout problème de dysfonctionnement à sysadmin@laas.fr. http://www.laas.fr/pulman/pulman-isens/web/app.php/