Retour au site du LAAS-CNRS

Laboratoire d’analyse et d’architecture des systèmes

Publications de l'équipe M3

Choisir la langue : FR | EN

15documents trouvés

17312
01/01/2018

Growth, stability and decomposition of Mg 2 Si ultra-thin films on Si (100)

B.SARPI, R.ZIRMI, M.PUTERO, M.BOUSLAMA, A.HEMERYCK, S.VIZZINI

IM2NP, LATAGE, LSM, M3

Revue Scientifique : Applied Surface Science, Vol.423, N°Part B, pp.522-527, Janvier 2018 , N° 17312

Lien : https://hal.laas.fr/hal-01583845

Diffusable

Plus d'informations

Abstract

Using Auger Electron Spectroscopy (AES), Scanning Tunneling Microscopy/Spectroscopy (STM/STS) and Low Energy Electron Diffraction (LEED), we report an in-situ study of amorphous magnesium silicide (Mg2Si) ultra-thin films grown by thermally enhanced solid-phase reaction of few Mg monolayers deposited at room temperature (RT) on a Si(100) surface. Silicidation of magnesium films can be achieved in the nanometric thickness range with high chemical purity and a high thermal stability after annealing at 150 °C, before reaching a regime of magnesium desorption for temperatures higher than 350 °C. The thermally enhanced reaction of one Mg monolayer (ML) results in the appearance of Mg2Si nanometric crystallites leaving the silicon surface partially uncovered. For thicker Mg deposition nevertheless, continuous 2D silicide films are formed with a volcano shape surface topography characteristic up to 4 Mg MLs. Due to high reactivity between magnesium and oxygen species, the thermal oxidation process in which a thin Mg2Si film is fully decomposed (0.75 eV band gap) into a magnesium oxide layer (6–8 eV band gap) is also reported.

140918
17234
01/12/2017

DFT-D study of adsorption of diaminoethane and propylamine molecules on anatase (101) TiO 2 surface

A.HEMERYCK, A.MOTTA, C.LACAZE-DUFAURE, D.COSTA, P.MARCUS

M3, IRCP, CIRIMAT

Revue Scientifique : Applied Surface Science, Vol.426, pp.107-115, Décembre 2017 , N° 17234

Lien : https://hal.laas.fr/hal-01574752

Diffusable

Plus d'informations

Abstract

The adsorption on anatase (101) TiO 2 surface of two model amines, diaminoethane (DAE) and propylamine (PPA), was investigated using Density Functional Theory-Dispersion included (DFT-D) calculations. The investigated coverage is ranging from 0.25 monolayer to full coverage (one amine molecule per surface Ti ion). Both interactions of the adsorbed layer with the anatase (101) TiO 2 surface and inter-molecular interactions are described. A structural transition from a bridge to a perpendicular structure is found for DAE when evolving from 0.25 monolayer to full coverage. At full coverage, a dense, ordered adhesive layer is formed. For DAE, at intermediate coverage, different isoenergetic configurations are found and structural transition from a bridge to a perpendicular structure is found. In contrast, the adsorption mode of PPA is more regular with only perpendicularly adsorbed molecules at all investigated coverages. Dispersion forces already account for 40% of the adsorption energy at low coverage (0.25 ML) and are the driving force for monolayer formation with a contribution of 60% up to 100% at high coverage. As revealed by molecular dynamics, the molecules can change their orientation towards the surface in a concerted way.

140521
17235
01/09/2017

Modeling of the interface formation during CuO deposition on Al(111) substrate: linking material design and elaboration process parameters through multi-levels approach

M.GUILTAT, N.SALLES, M.BRUT, G.LANDA, N.RICHARD, S.VIZZINI, A.HEMERYCK

M3, CEA-DAM, IM2NP

Revue Scientifique : Modelling and Simulation in Materials Science and Engineering, Vol.25, N°6, 064005p., Septembre 2017 , N° 17235

Lien : https://hal.laas.fr/hal-01574744

Diffusable

Plus d'informations

Abstract

In this paper, we use a multi-levels modeling approach to describe the elaboration of directly integrated energetic materials. The deposition of copper oxide on aluminum substrate is described. Atomic scale calculations are first conducted to identify local mechanisms involved during the growth of CuO on Al(111). These atomic scale data are then used to parameterize a macroscopic code, inspired on a kinetic Monte Carlo methodology dedicated to simulate vapor like deposition process. The objective is to establish the link between the microstructure of materials and the way they are achieved, i.e. the process parameters such as temperature and gas pressure. This work is conducted in the context of the integration of nano-structured energetic thermites used as micro energy source in microelectronic devices. We show that the temperature of the deposition process appears as the driving parameter to tailor the thickness of interfacial layers.

140523
17233
01/08/2017

Strain-driven diffusion process during silicon oxidation investigated by coupling density functional theory and activation relaxation technique

N.SALLES, N.RICHARD, N.MOUSSEAU, A.HEMERYCK

M3, CEA-DAM, UdeM

Revue Scientifique : The Journal of Chemical Physics, Vol.147, N°5, 054701p., Août 2017 , N° 17233

Lien : https://hal.laas.fr/hal-01574755

Diffusable

Plus d'informations

Abstract

The reaction of oxygen molecules on an oxidized silicon model-substrate is investigated using an efficient potential energy hypersurface exploration that provides a rich picture of the associated energy landscape, energy barriers, and insertion mechanisms. Oxygen molecules are brought in, one by one, onto an oxidized silicon substrate, and accurate pathways for sublayer oxidation are identified through the coupling of density functional theory to the activation relaxation technique nouveau, an open-ended unbiased reaction pathway searching method, allowing full exploration of potential energy surface. We show that strain energy increases with O coverage, driving the kinetics of diffusion at the Si/SiO 2 interface in the interfacial layer and deeper into the bulk: at low coverage, interface reconstruction dominates while at high coverage, oxygen diffusion at the interface or even deeper into the bottom layers is favored. A changing trend in energetics is observed that favors atomic diffusions to occur at high coverage while they appear to be unlikely at low coverage. Upon increasing coverage, strain is accumulated at the interface, allowing the oxygen atom to diffuse as the strain becomes large enough. The observed atomic diffusion at the interface releases the accumulated strain, which is consistent with a layer-by-layer oxidation growth.

140519
16457
01/03/2017

Dioxygen molecule adsorption and oxygen atom diffusion on clean and defective Aluminum (111) surface using first principles calculations

A.HEMERYCK, M.GUILTAT, M.BRUT, S.VIZZINI

M3, IM2NP

Revue Scientifique : Surface Science, Vol.657, pp.79-89, Mars 2017 , N° 16457

Lien : https://hal.archives-ouvertes.fr/hal-01407658

Diffusable

Plus d'informations

Abstract

First principles calculations are conducted to investigate kinetic behavior of oxygen species at the surface of clean and defective Al(111) substrate. Oxygen island, aluminum vacancy, aluminum sub-vacancy, aluminum ad-atom and aluminum terraces defects are addressed. Adsorption of oxygen molecule is first performed on all these systems resulting in dissociated oxygen atoms in main cases. The obtained adsorbed configurations are then picked to study the behavior of atomic oxygen specie and get a detailed understanding on the effect of the local environment on the ability of the oxygen atom to diffuse on the surface. We pointed out that local environment impacts energetics of oxygen atom diffusion. Close packed oxygen island, sub-vacancy and ad-atoms favor oxygen atom stability and decrease mobility of oxygen atom on the surface, to be seen as surface area for further nucleation of oxygen island.

138449
16389
01/01/2017

Simulation of single particle displacement damage in silicon – Part II: Generation and long-time relaxation of damage structure

A.JAY, M.RAINE, N.RICHARD, N.MOUSSEAU, V.GOIFFON, A.HEMERYCK, P.MAGNAN

ISAE, CEA-DAM, UdeM, M3

Revue Scientifique : IEEE Transactions on Nuclear Science, Vol.64, N°1, pp.141-148, Janvier 2017 , N° 16389

Lien : https://hal.archives-ouvertes.fr/hal-01407740

Diffusable

Plus d'informations

Abstract

A statistical study of displacement cascades induced by silicon Primary Knock-on Atoms (PKA) in bulk silicon is performed by running a large number of molecular dynamics (MD) simulations. The choice of the PKA species and energy varying from 1 to 100 keV comes from a previous particle-matter simulation [1]. The electronic stopping power missing in standard MD simulations is here taken into account using the Two Temperature Model (TTM). This prevents from overestimating the number of created defects. The damaged atomic structures obtained after one nanosecond of MD simulation are not representative of what is observed in image sensors for example after several minutes. For this reason, the kinetic Activation Relaxation Technique (k-ART) is used in a second step, allowing to access longer simulation times of up to second. The obtained damaged structures can then be compared with experimental observations. Analyses reveal two possible links between the simulated structures and the measurements in solid-state image sensors. First, the cluster size distribution exhibits a shape similar to the measured exponential distribution of Dark Current (DC). Second, the temporal evolution of metastable atomic configurations resembles experimental DC-Random-Telegraph-Signals.

138193
16381
14/10/2016

Développement d’une plateforme de simulation atomistique pour les procédés en phase vapeur par une approche multi-niveaux : Application au dépôt de CuO sur Al(111)

M.GUILTAT

M3

Doctorat : Université de Toulouse III - Paul Sabatier, 14 Octobre 2016, 215p., Président: F.CRISTIANO, Rapporteurs: N.MOUSSEAU, D.COSTA, Examinateurs: N.RICHARD, S.VIZZINI, Directeurs de thèse: A.HEMERYCK , N° 16381

Lien : https://hal.laas.fr/tel-01483860

Diffusable

Plus d'informations

Abstract

The aim of this thesis is to link materials microstructure and their macroscopic properties which are a very important technologic and scientific barrier, especially for material miniaturising, directly integrated and with improved specifications. Enabling this new material booming implies efforts in the development of new technological processes able to make mater deposition with atomic scale control. This can’t be done without a theoretical support in order to access to a fondamental understanding of material growth mechanisms. In this context, predictive modelling of deposition process is strategic, leading technologists toward advanced nanostructured materials conception. We choose the multi-scale approach to answer this problematic. First, an atomic scale study is done, using DFT, in order to measure local energies, mechanisms and structures. Then, those results are used as input parameters in a home made simulation tool using kinetic Monte Carlo. This tool is able to simulate systems with several tens of thousands atoms, during long simulation time, for low calculation time. The outputs are directly comparable to experimental data. In summary, we obtain an atomic grain texture tool, fitted with simulation platform, for an easy and intuitive use for the engineer. This tool is predictive and allows technologists to make predictive simulations, restricting cost and test in clean room. The aim is to set up a link between the atomic scale nanostructuration and the fabrication process, toward this user-friendly simulation platform. We suggest a model based on kinetic Monte Carlo, for the PVD deposition simulation of Al/CuO multilayered materials.

Résumé

Cette thèse a pour but d’établir le lien entre la microstructure des matériaux et leurs propriétés macroscopiques qui est un verrou technologique et scientifique important, dans un contexte de conception de matériaux miniaturisés, directement intégrés et aux performances améliorées. Pour permettre le plein essor de ces nouveaux matériaux, des efforts doivent notamment être fournis sur le développement de nouveaux procédés technologiques, capables de déposer la matière avec un contrôle à l’échelle atomique. Ceci ne peut se faire sans un accompagnement théorique pour accéder à une compréhension fondamentale des mécanismes gérant la croissance de ces matériaux. Dans ce contexte, la modélisation prédictive du procédé de dépôt s’avère stratégique pour guider les technologues vers la conception de matériaux nanostructurés avancés. Pour répondre au mieux à cette problématique, les travaux présentés dans cette thèse suivent une approche multi-niveaux. Dans un premier temps, une étude à l’échelle atomique avec des calculs DFT est faite, afin de relever des énergies, des mécanismes et des structures, localement. Ces résultats sont ensuite utilisés comme paramètres d’entrée dans un outil de simulation utilisant la méthodologie Monte Carlo cinétique, développé spécialement au cours de ces travaux. Cet outil permet de simuler des systèmes de plusieurs dizaines de milliers d’atomes sur des temps longs, pour des coûts en calculs faibles. Les résultats obtenus avec cet outil sont directement comparables avec des résultats expérimentaux. Nous avons donc un outil doté d’une granularité à l’échelle atomique équipé d’une plateforme de simulation pour permettre à l’ingénieur une utilisation simple et intuitive de celui-ci. Cet outil se veut prédictif et permettra ainsi au technologue de réaliser des simulations prédictives et par suite de limiter les coûts et les essais en salle blanche. L’objectif est d’établir un lien entre la nanostructuration à l’échelle atomique et le procédé de fabrication, à travers cette plateforme de simulation simple d’utilisation. Ici, nous proposons un modèle basé sur une méthodologie de type Monte Carlo cinétique pour simuler le dépôt PVD de matériaux multicouches Al/CuO.

Mots-Clés / Keywords
Intégration de matériaux; Croissance et nano-structuration; Modélisation multiniveaux; Calculs à l’échelle atomique; Monte Carlo cinétique; Plateforme de simulation pour les procédés de dépôt;

138113
16573
09/10/2016

Linking design of materials and technological process parameters for tailored integration in Microelectronics field: climbing the scales

A.HEMERYCK, M.GUILTAT, N.SALLES, N.RICHARD

M3, CEA-DAM

Manifestation avec acte : Multiscale Materials Modeling international conference ( MMM ) 2016 du 09 octobre au 14 octobre 2016, Dijon (France), Octobre 2016, 1p. , N° 16573

Lien : https://hal.archives-ouvertes.fr/hal-01407881

Diffusable

Plus d'informations

Abstract

New advanced nanoscale-controlled materials could offer unique functionalities and improve their use in various areas such as the ultrathin films in nanotechnology. Increasing our knowledge and understanding of properties of directly integrated materials at an atomistic level and developing the means of predicting and controlling their structures and functions at the nanometre scale will help to push forward their tailored elaboration. Understanding how matter organizes at the atomic scale during deposition of ultrathin materials in close relation with elaboration process parameters is the addressed topic. It is then necessary to use simulation methods with different length and time scales in order to get a precise description of the physics and chemistry of phenomena but also an overlook on the growth of materials. In our approach, we propose a multilevel approach where modeling / simulation tools are used as a bottom up strategy from atomic scale to simulation platform development linking design and manufacturing. We propose a model based on a kinetic Monte Carlo (KMC) method to simulate growth of directly integrated materials to understand and evaluate the influence of experimental conditions on the nanostructuring and final performances of integrated nanomaterials with the aim to improve their integration into devices. Illustrations on growth of oxide layers under technological processes will be given, notably SiO2 growth through thermal oxidation and CuO growth on Al surface through PVD. This methodology offers the possibility to access to the exact structure of the material as a function of the manufacturing process and thus to access to the detailed composition, that depends on the conditions in which it was synthesized. We except to propose microscopic elements that could guide the technologist to improve processing and improve the properties of the operating material.

139456
16460
09/10/2016

Atomic scale modeling to understand how matter organizes during growth of ultrathin materials in close relation with elaboration process parameters: climbing the scales

A.HEMERYCK, M.GUILTAT, N.SALLES, N.RICHARD

M3, CEA-DAM

Manifestation avec acte : IEEE Nanotechnology Materials and Devices Conference ( IEEE NMDC ) 2016 du 09 octobre au 12 octobre 2016, Toulouse (France), Octobre 2016, 2p. , N° 16460

Lien : https://hal.archives-ouvertes.fr/hal-01407855

Diffusable

Plus d'informations

Abstract

A multi-levels modeling approach focusing on the elaboration of directly integrated materials is described. Atomic scale calculations are conducted to identify local mechanisms occurring during the growth of material and are then used to parameterize a macroscopic code, developed to simulate vapor like deposition process. The objective is to establish the link between the microstructure of materials and the way they are achieved, i.e. process parameters.

138454
16297
23/06/2016

Lab on chip for the enrichment, separation and characterization of DNA, and application to the detection of cancer biomarkers in blood plasma

R.MALBEC, P.JOSEPH, T.LEICHLE, M.BRUT, P.CORDELIER, A.BANCAUD

MILE, MEMS, M3, CRCT-INSERM

Manifestation sans acte : Annual Meeting of the GDR Micro et Nano Fluidique ( GDR MNF ) 2016 du 23 juin au 24 juin 2016, Paris (France), Juin 2016, 1p. , N° 16297

Diffusable

137527
Les informations recueillies font l’objet d’un traitement informatique destiné à des statistiques d'utilisation du formulaire de recherche dans la base de données des publications scientifiques. Les destinataires des données sont : le service de documentation du LAAS.Conformément à la loi « informatique et libertés » du 6 janvier 1978 modifiée en 2004, vous bénéficiez d’un droit d’accès et de rectification aux informations qui vous concernent, que vous pouvez exercer en vous adressant à
Pour recevoir une copie des documents, contacter doc@laas.fr en mentionnant le n° de rapport LAAS et votre adresse postale. Signalez tout problème de dysfonctionnement à sysadmin@laas.fr. http://www.laas.fr/pulman/pulman-isens/web/app.php/