Retour au site du LAAS-CNRS

Laboratoire d’analyse et d’architecture des systèmes

Publications de l'équipe ELiA

Choisir la langue : FR | EN

8documents trouvés

17023
01/02/2017

Bacteria transfer by deformation through microfiltration membrane

A.GAVEAU, C.COETSIER, C.ROQUES, P.BACCHIN, E.DAGUE, C.CAUSSERAND

LGC, ELIA

Revue Scientifique : Journal of Membrane Science, Vol.523, pp.446-455, Février 2017 , N° 17023

Lien : https://hal.archives-ouvertes.fr/hal-01451400

Diffusable

Plus d'informations

Abstract

Living particles such as bacteria are able to transfer through membrane pores that are smaller than cell size due to the specific stiffness of this type of microorganism. This phenomenon can lead to a significant loss of selectivity in the filtration process, which is a major cause of concern in the sterilizing filtration step. This study investigates the retention of three bacteria strains: Escherichia coli CIP 54124, Pseudomonas aeruginosa CIP 103467 and Staphylococcus aureus CIP 53154 by model porous membranes for various operating conditions (transmembrane pressure, feed concentration and the physicochemical composition of filtered media with antibacterial agent added at sublethal concentration). The first part of this study is dedicated to defining the size and the nanomechanical properties of the envelope of the studied bacteria by microscopic techniques (Transmission electron microscopy & Atomic-force microscopy), in order to then explore the role of these quantifiable characteristics on the cell transfer through the pores by deformation mechanisms. Our results lead to the development of a numerical model to connect the observed retention efficiency of the filtration experiment and the microscopic information about individual particles.

139060
17002
26/01/2017

Spray-coated carbon nanotube carpets for creeping reduction of conducting polymer based artificial muscles

A.SIMAITE, A.DELAGARDE, B.TONDU, P.SOUERES, E.FLAHAUT, C.BERGAUD

MEMS, ELIA, GEPETTO, CIRIMAT

Revue Scientifique : Nanotechnology, Vol.28, N°2, 025502p., Janvier 2017 , N° 17002

Lien : https://hal.laas.fr/hal-01413022

Diffusable

Plus d'informations

Abstract

It is often observed that during cyclic actuation conducting polymer based artificial muscles are continuously creeping from the initial movement range. One of the likely reasons of such behaviour is unbalanced charging during conducting polymer oxidation and reduction. In order to improve the actuation reversibility and subsequently the long time performance of ionic actuators, we suggest to use spray-coated carbon nanotube (CNT) carpets on the surface of the conducting polymer electrodes. We show that carbon nanotubes facilitate conducting polymer redox reaction and improve its reversibility. Consequently, in the long term, charge accumulation in the polymer film is avoided leading to significantly improved long term performance during cycling actuation.

138654
16554
01/11/2016

Versatile multicharacterization platform involving tailored superhydrophobic SU-8 micropillars for the investigation of breast cancer estrogen receptor isoforms

A.ACCARDO, E.TREVISIOL, A.CERF, C.THIBAULT, H.LAURELL, M.BUSCATO, F.LENFANT, J.F.ARNAL, C.FONTAINE, C.VIEU

ELIA, INSERM

Revue Scientifique : Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol.34, N°6, 06K201p., Novembre 2016 , N° 16554

Diffusable

Plus d'informations

Abstract

Here, the authors report the fabrication of lotus-leaf-like tailored SU8 micropillars and their application in the context of a multitechnique characterization protocol for the investigation of the structural properties of the two estrogen receptors (ERα66/ERα46). ER (α) expression is undoubtedly the most important biomarker in breast cancer, as it provides the index for sensitivity to endocrine treatment. Beside the well-characterized ERα66 isoform, a shorter one (ERα46) is also expressed in ERα positive breast cancers and breast cancer cell lines. The superhydrophobic supports were developed by using a two-step approach including an optical lithography process and a plasma reactive ion roughening one. Upon drying on the micropillars, the biological samples resulted in stretched fibers of different diameters which were then characterized by synchrotron x-ray diffraction (XRD), Raman and Fourier-transform infrared spectroscopy. The evidence of both different spectroscopic vibrational responses and XRD signatures in the two estrogen receptors suggests the presence of conformational changes between the two biomarkers. The SU8 micropillar platform therefore represents a valid tool to enhance the discrimination sensitivity of structural features of this class of biomarkers by exploiting a multitechnique in situ characterization approach.

139233
16390
28/10/2016

Sélection et capture de biomarqueurs moléculaires et cellulaires à partir d' un fluide complexe

H.CAYRON

ELIA

Doctorat : INSA de Toulouse, 28 Octobre 2016, 207p., Président: G.FAVRE, Rapporteurs: C.A.PANABIERES, I.SAGNES, Examinateurs: A.CERF, H.CRAIGHEAD, S.DESCROIX, J.MORAN-MIRABAL, Directeurs de thèse: C.VIEU , N° 16390

Diffusable

Plus d'informations

Abstract

In this XXIst century, medicine is gravitating towards the personalized care of a patient, this trend being manifested through the concept of precision medicine. In oncology particularly, the sampling of biological tissues from a tumor, or biopsy, is currently used for diagnostic purposes. Physicians are nowadays interested in the concept of “liquid biopsy”, reflecting the direct access to circulating biomarkers from various biofluids via a simple blood sampling for example, less invasive than tissue sampling, for the diagnostic and follow-up of pathologies. This research project focused on two technological approaches emerging from microfabrication for the selection and capture of circulating molecular and cellular biomarkers. At the molecular scale, this work was based on the automation of a directed capillary assembly protocol. A dedicated module was implemented into an automate for molecular stamping and validated using a simple molecular model, allowing the elongation and large-scale assembly of single biomolecules in a controlled and automatized manner. The developed technology was then used for the assembly of relevant molecular biomarkers such as cell-free DNA (cfDNA) from untreated whole blood, evidencing the capabilities of this technology to single out nucleic acids from complex fluids composed of other cellular elements. At the cellular scale, an innovative concept for Circulating Tumor Cells (CTCs) selection and capture was developed. The developed microdevice is fabricated using 3D direct laser writing and allows for a physical capture of cells from untreated whole blood while preserving them for further recovery and analysis. After having optimized the design in vitro to maximize the capture efficiency of the system, a selective capture of cancer cells from untreated whole blood was achieved. A first prototype for the in vivo use of this system was also developed and validated in vitro with cancer cells spiked into culture medium, opening up wide possibilities from an applicative and translational perspective.

Résumé

La médecine du XXIème se dirige vers une prise en charge individuelle du patient et s’inscrit dans un concept que l’on nomme médecine de précision. Dans le domaine de l’oncologie en particulier, les prélèvements tissulaires sur la tumeur, ou biopsie, sont couramment utilisés pour établir un diagnostic chez un patient donné. Les médecins s’intéressent de nos jours au concept de biopsie liquide, traduisant l’accès à des biomarqueurs circulants dans divers biofluides corporels via un simple prélèvement, sanguin par exemple, moins invasif que les prélèvements tissulaires dans le diagnostic et le suivi des pathologies. Ce travail de thèse s’est axé autour de deux approches technologiques issues du domaine de la microfabrication pour la sélection et la capture de biomarqueurs circulants, aux échelles moléculaire et cellulaire. A l’échelle moléculaire, ces travaux se sont axés sur l’automatisation d’un protocole d'assemblage capillaire dirigé. Un module a été implémenté dans un automate de tamponnage moléculaire puis validé en utilisant un modèle moléculaire simple, permettant l'isolement et l'étirement de biomolécules individuelles de manière entièrement contrôlée et automatisée à large échelle. Nous avons ensuite appliqué cette technologie à des biomarqueurs moléculaires d'intérêt tels que les ADN libres (cfDNA) contenus dans du sang complet, démontrant la capacité de la technique à isoler des acides nucléiques à partir d’un fluide complexe, ici parmi une population de cellules sanguines. A l’échelle cellulaire, une approche innovante pour la sélection et la capture de Cellules Tumorales Circulantes (CTCs) a été développée. Le microdispositif mis au point est fabriqué par écriture laser à 3 dimensions et permet le piégeage physique de ces cellules dans du sang complet non traité tout en les préservant pour une récupération et analyse ultérieure. Après adaptation du microdispositif pour maximiser son efficacité de capture in vitro, une première preuve de concept de capture sélective de cellules cancéreuses dans du sang complet non traité a été réalisée. Un premier prototype pour une utilisation in vivo a été mis au point et validé in vitro sur la capture de cellules cancéreuses dans du milieu de culture, ouvrant de larges perspectives au niveau applicatif et translationnel.

Mots-Clés / Keywords
Biomarqueurs; Microtechnologies; Assemblage capillaire; Biopsie liquide; Oncologie; Lithographie 3D; Biomarkers; Capillary assembly; Liquid biopsy; Oncology; 3D lithography;

138213
16383
11/10/2016

Propriétés biophysiques des cardiomyocytes vivants en condition physio/ physiopathologique et architecture des récepteurs couplés aux protéines G explorées par microscopie à force atomique

V.LACHAIZE

ELIA

Doctorat : Université de Toulouse III - Paul Sabatier, 11 Octobre 2016, Président: J.M.SENARD, Rapporteurs: S.LABDI, P.MANIVET, Examinateurs: S.EL-KIRAT-CHATEL, Directeurs de thèse: E.DAGUE, C.GALES , N° 16383

Diffusable

Plus d'informations

Abstract

Heart failure is a public health problem with 1 million patients this year in France. This pathology is defined inability to heart pump sufficiently to maintain blood flow to meet the body's needs. This decrease is explicated by the loss of contractile function of the heart, caused by the necrosis of the contractile cells: cardiomyocytes. In this study, I was able to study the topographic and biomechanical modification of the cardiomyocyte membrane upstream of its rupture during necrosis, by technology derived from nanosciences : atomic force microscopy (AFM). My work reveals a highly structured membrane in healthy cardiomyocytes and a loss of this architecture in an early stage of the heart failure installation. In a second study I was interested in the oligomeric organization of a transmembrane receptors family , G protein-coupled receptors. These proteins are a privileged target for the pharmacological treatments on heart failure such as beta- Blockers and vasodilators. This oligomerization mechanism could be the key to the side effects associated with treatments. In order to study the oligomeric conformation, I used single molecule force spectroscopy and I reveal different oligomeric populations of these receptors on the membrane. The results showed a oligomeric populations distribution according the conditions (plasmid density coding for receptors / stimulation with synthetic or natural agonist). It is possible that there is a regulation of the signaling pathways, using the oligomerization for specific activation receptors. The possible difference in activity of each oligomeric population (monomer / dimer / tetramer / hexamer) appears to be a plausible explanation for the side effects of pharmacological agents. My thesis work allowed the discovery of a new track by an innovative technology, atomic force microscopy, in the treatment of heart failure.

Résumé

L’insuffisance cardiaque est un réel problème de santé publique avec 1 millions de patients souffrant de cette pathologie cette année en France. Elle est définie incapacité de fournir un débit sanguin suffisant à l’organisme. Cette diminution de débit est traduite par la perte de fonction contractile du coeur provoqué par la nécrose des cellules responsable de cette fonction : les cardiomyocytes. Dans cette étude j’ai pu étudier les modifications topographiques et biomécaniques de la membrane du cardiomyocyte vivant en amont de sa rupture lors de la nécrose, par une technologie issue des nanosciences : la microscopie à force atomique (AFM). Mes travaux ont fait apparaitre une membrane très structurée chez le cardiomyocyte sain et une perte de cette architecture dans un temps précoce de l’installation de l’insuffisance cardiaque. L’utilisation de la microscopie électronique à transmission à montrer que les anomalies mises en évidences par AFM ont pour origine un réarrangement mitochondriale. Dans une seconde étude je me suis intéressée à l’organisation oligomérique d’une famille particulière de récepteur transmembranaire, les récepteurs couplés aux protéines G. Ces protéines sont une des cibles privilégiées pour les traitements pharmacologiques de l’insuffisance cardiaque tel que le bêta-bloquants et les vasodilatateurs. Ce mécanisme d’oligomérisation pourrait être la clef des effets secondaires liés à ces traitements. Afin d’étudier la conformation oligomérique, j’ai utilisé la spectroscopie de force à l’échelle de la molécule unique pour mettre en évidence différentes populations oligomérique de ces récepteurs sur la surface membranaire. Les résultats ont montré une distribution des populations oligomériques en fonction des conditions (densité de plasmide codants pour les récepteurs/stimulation avec agoniste synthétique ou naturel). Il est possible qu’il y ait une régulation des voies de signalisations par l’oligomérisation des récepteurs activés. La différence d’activité possible de chaque population oligomérique (monomère/dimère/tétramère/hexamère) semble être une explication plausible aux effets secondaire des agents pharmacologique. Mes travaux de thèse ont permis la mise en évidence de nouvelle piste par une technologie innovante, la microscopie à force atomique, dans le traitement de l’insuffisance cardiaque.

Mots-Clés / Keywords
Insuffisance cardiaque; Microscopie à force atomique; Cardiomyocytes; RCPG; Oligomérisation; Spectroscopie de force à l’échelle de la molécule unique; Heart failure; Atomic force microscopy; Oligomerization; Single molecule force spectroscopy;

138133
16553
01/06/2016

Reversible magnetic clamp of a microfluidic interface for the seric detection of food allergies on allergen microarrays

J.FONCY, E.CRESTEL, J.PBORGES, A.ESTEVE, J.C.CAU, C.VIEU, L.MALAQUIN, E.TREVISIOL

ELIA, INNOPSYS

Revue Scientifique : Microelectronic Engineering, Vol.158, pp.16-21, Juin 2016 , N° 16553

Lien : https://hal.laas.fr/hal-01484322

Diffusable

Plus d'informations

Abstract

To provide a robust platform for fluid handling, most microfluidic devices usually involve irreversible bonding methods to achieve a leak free interface between the microchannels and the holding substrate. Such an approach induces a major drawback when biological interactions are performed on a microarray format as it is difficult to recover the biochip for further fluorescence scanner analysis. This work describes an automated microfluidic platform using a reversible magnetic clamp for multiplexed immunodiagnostics. The microfluidic device is composed of a magnetic PDMS layer (containing iron powder) coated by PDMS, which is reversibly clamped to an epoxysilane glass slide containing an array of various antigens. The microfluidic device was validated for in vitro diagnosis of food allergies on an allergen microarray after serum interaction. The statistical analysis of spot intensities (signal to noise ratios) on the microarray displayed excellent reproducibility. In addition to the reduction of volumes provided by miniaturization, this approach is versatile, is easy-to-produce and provides an effective platform for multiplexed immunodiagnosis based on conventional fluorescent detection schemes.

139213
16555
01/02/2016

Evaluation of the force and spatial dynamics of macrophage podosomes by multi-particle tracking

A.PROAG, A.BOUISSOU, C.VIEU, I.MARIDONNEAU-PARINI, R.POINCLOUX

IPBS, ELIA

Revue Scientifique : Methods, Vol.94, pp.75-84, Février 2016 , N° 16555

Diffusable

Plus d'informations

Abstract

Podosomes are submicron adhesive and mechanosensitive structures formed by macrophages, dendritic cells and osteoclasts that are capable of protruding into the extracellular environment. Built of an F-actin core surrounded by an adhesion ring, podosomes assemble in a network interconnected by acto-myosin cables. They have been shown to display spatiotemporal instability as well as protrusion force oscillations. To analyse the entire population of these unstable structures, we have designed an automated multi-particle tracking adapted to both topographical and fluorescence data. Here we describe in detail this approach and report the measurements of individual and collective characteristics of podosome ensembles, providing an integrated picture of their activity from the complementary angles of organisation, dynamics, mobility and mechanics. We believe that this will lead to a comprehensive view of podosome collective behaviour and deepen our knowledge about the significance of mechanosensing mediated by protrusive structures.

139237
15745
01/10/2015

Nanopatterning for nanobiotechnologies: emerging methods based on soft-lithography and directed assembly

A.CERF, C.THIBAULT, E.TREVISIOL, C.VIEU

ELIA

Ouvrage (contribution) : Enzyme Nanocarriers, CRC Press, Octobre 2015, 15p. , N° 15745

Diffusable

139235
Les informations recueillies font l’objet d’un traitement informatique destiné à des statistiques d'utilisation du formulaire de recherche dans la base de données des publications scientifiques. Les destinataires des données sont : le service de documentation du LAAS.Conformément à la loi « informatique et libertés » du 6 janvier 1978 modifiée en 2004, vous bénéficiez d’un droit d’accès et de rectification aux informations qui vous concernent, que vous pouvez exercer en vous adressant à
Pour recevoir une copie des documents, contacter doc@laas.fr en mentionnant le n° de rapport LAAS et votre adresse postale. Signalez tout problème de dysfonctionnement à sysadmin@laas.fr. http://www.laas.fr/pulman/pulman-isens/web/app.php/