Retour au site du LAAS-CNRS

Laboratoire d’analyse et d’architecture des systèmes

Publications de l'équipe DISCO

Choisir la langue : FR | EN

853documents trouvés

16056
01/06/2018

Optimal input design for paprameter estimation in a bounded-error context for nonlinear dynamical systems

C.JAUBERTHIE, L.DENIS-VIDAL, Q.LI, Z.CHERFI-BOULANGER

Université Compiègne, DISCO

Revue Scientifique : Automatica, Vol.92, pp.86-91, Juin 2018 , N° 16056

Lien : https://hal.archives-ouvertes.fr/hal-01739523

Diffusable

Plus d'informations

Abstract

This paper deals with optimal input design for parameter estimation in a bounded-error context. Uncertain controlled nonlinear dynamical models, when the input can be parametrized by a finite number of parameters, are considered. The main contribution of this paper concerns criteria for obtaining optimal inputs in this context. Two input design criteria are proposed and analyzed. They involve sensitivity functions. The first criterion requires the inversion of the Gram matrix of sensitivity functions. The second one does not require this inversion and is then applied for parameter estimation of a model taken from the aeronautical domain. The estimation results obtained using an optimal input are compared with those obtained with an input optimized in a more classical context (Gaussian measurement noise and parameters a priori known to belong to some boxes). These results highlight the potential of optimal input design in a bounded-error context.

142952
18075
01/02/2018

Evidential box particle filter using belief function theory

T.A.TRAN, C.JAUBERTHIE, F.LE GALL, L.TRAVE-MASSUYES

DISCO

Revue Scientifique : International Journal of Approximate Reasoning, Vol.93, pp.40-58, Février 2018 , N° 18075

Lien : https://hal.archives-ouvertes.fr/hal-01739540

Diffusable

Plus d'informations

Abstract

A box particle filtering algorithm for nonlinear state estimation based on belief function theory and interval analysis is presented. The system under consideration is subject to bounded process noises and Gaussian multivariate measurement errors. The mean and the covariance matrix of Gaussian random variables are considered bounded due to modeling errors. The belief function theory is a means to represent this type of uncertainty using a mass function whose focal sets are intervals. The proposed algorithm applies interval analysis and constraint satisfaction techniques. Two nonlinear examples show the efficiency of the proposed approach compared to the original box particle filter.

142954
17112
01/12/2017

Integrated vehicle control through the coordination of longitudinal/lateral and vertical dynamics controllers: Flatness and LPV/H ∞ based design

S.FERGANI, L.MENHOUR, O.SENAME, L.DUGARD, B.DANDREA NOVEL

DISCO, URCA, GIPSA-Lab, Mines ParisTech

Revue Scientifique : International Journal of Robust and Nonlinear Control, Vol.27, N°18, pp.4992-5007, Décembre 2017, doi 10.1002/rnc.3846 , N° 17112

Lien : https://hal.archives-ouvertes.fr/hal-01509787

Diffusable

Plus d'informations

Abstract

This paper deals with Global Chassis Control (GCC) of ground vehicles. It focuses on the coordination of suspensions and steering/braking vehicle controllers based on the interaction between the vertical and lateral behaviors of the vehicle. Indeed, the roll motion of the car can generate increasing load transfers that affect considerably the suspension system and vehicle stability. The load transfers can be described using the lateral acceleration. Then, the coordination is highlighted, in this work, through the relationship between the suspension behavior and the lateral acceleration in the framework of the Linear Paramter Varying (LPV) approach. The proposed control law is designed in hierarchical way to improve the overall dynamics of the vehicle. This global control strategy includes two types controllers. The first one is the longitudinal/lateral nonlinear Flatness controller. Based on the adequate choice of the flat outputs, the flatness proof of a 3DoF two wheels nonlinear vehicle model has been established. Then, the combined longitudinal and lateral vehicle control is designed. The algebraic estimation techniques have been used in order to have an accuracy estimation of the derivatives and filtering of the reference flat outputs. Such control strategy is developed in order to cope with coupled driving maneuvers like obstacle avoidance via steering control and stop-and-go control via braking or driving wheel torque. The second part of the proposed strategy consists of the LP V /H∞ suspension controller. This controller uses the lateral acceleration as a varying parameter to take into account the load transfers that affects directly the suspension system and therefore to achieve the desired performance. The coordination between the vehicle vertical and lateral dynamics is highlighted in this study, and the LP V /H∞ framework ensures a specific collaborative coordination between the suspension and the steering/braking controllers. Simulations on a complex full vehicle model have been validated using experimental data obtained on-board vehicle, with an identification procedure on a real Renault Mégane Coupé.

141739
17488
29/11/2017

Cadre unifié pour la modélisation des incertitudes statistiques et bornées – Application à la détection et isolation de défauts dans les systèmes dynamiques incertains par estimation

T.A.TRAN

DISCO

Doctorat : Université de Toulouse III - Paul Sabatier, 29 Novembre 2017, 189p., Président: G.DE COOMAN, Rapporteurs: N.RAMDANI, P.BONNIFAIT, Examinateurs: L.TRAVE-MASSUYES, Directeurs de thèse: F.LE GALL, C.JAUBERTHIE , N° 17488

Lien : https://hal.laas.fr/tel-01705119

Diffusable

Plus d'informations

Abstract

This thesis deals with state estimation in discrete-time dynamic systems in the context of the integration of statistical and bounded error uncertainties. Motivated by the drawbacks of the interval Kalman filter (IKF) and its improvement (iIKF), we propose a filtering algorithm for linear systems subject to uncertain Gaussian noises, i.e. with the mean and covariance matrix defined by their membership to intervals. This new interval Kalman filter (UBIKF) relies on finding a punctual gain matrix minimizing an upper bound of the set of estimation error covariance matrices by respecting the bounds of the parametric uncertainties. An envelope containing all possible estimates is then determined using interval analysis. The UBIKF reduces not only the computational complexity of the set inversion of the matrices intervals appearing in the iIKF, but also the conservatism of the estimates. We then discuss different frameworks for representing incomplete or imprecise knowledge, including the cumulative distribution functions, the possibility theory and the theory of belief functions. Thanks to the last, a model in the form of a mass function for an uncertain multivariate Gaussian distribution is proposed. A box particle filter based on this theory is developed for non-linear dynamic systems in which the process noises are bounded and the measurement errors are represented by an uncertain Gaussian mass function. Finally, the UBIKF is applied to fault detection and isolation by implementing the generalized observer scheme and structural analysis. Through various examples, the capacity for detecting and isolating sensor/actuator faults of this tool is illustrated and compared to other approaches.

Résumé

Cette thèse porte sur l’estimation d’état des systèmes dynamiques à temps discret dans le contexte de l’intégration d’incertitudes statistiques et à erreurs bornées. Partant du filtre de Kalman intervalle (IKF) et de son amélioration (iIKF), nous proposons un algorithme de filtrage pour des systèmes linéaires dont les bruits sont gaussiens incertains, c’est-à-dire de moyenne et matrice de covariance définies par leur appartenance à des intervalles. Ce nouveau filtre de Kalman intervalle (UBIKF) repose sur la recherche d’une matrice de gain ponctuelle minimisant une borne majorante de l’ensemble des matrices de covariance de l’erreur d’estimation en respectant les bornes des incertitudes paramétriques. Un encadrement de tous les estimés possibles est ensuite déterminé en utilisant l’analyse par intervalles. Le filtre UBIKF permet de réduire à la fois la complexité calculatoire de l’inversion ensembliste des matrices intervalles présent dans le filtre iIKF et le conservatisme des estimations. Nous abordons ensuite différents cadres permettant de représenter des connaissances incomplètes ou imprécises, y compris les fonctions de répartition, la théorie de possibilité et la théorie des fonctions de croyance. Grâce à cette dernière, un modèle sous forme d’une fonction de masse pour une distribution gaussienne multivariée incertaine est proposé. Un filtrage particulaire ensembliste basé sur cette théorie est développé pour des systèmes dynamiques non linéaires dans lesquels les bruits sur la dynamique sont bornés et les erreurs de mesure sont modélisées par une fonction de masse gaussienne incertaine. Enfin, le filtre UBIKF est utilisé pour la détection et l’isolation de défauts en mettant en oeuvre le schéma d’observateurs généralisé et l’analyse structurelle. Au travers de différents exemples, la capacité d’isolation de défauts capteurs/ actionneurs de cet outil est illustrée et comparée à d’autre approches.

Mots-Clés / Keywords
Distributions de probabilités incertaines; Théorie des fonctions de croyance; Diagnostic; Filtrage de Kalman ensembliste; Filtrage particulaire ensembliste;

142093
17579
17/11/2017

Détection et localisation de fautes temporelles dans les systèmes (max,+)-linéaires

E.LE CORRONC, A.SAHUGUEDE, Y.PENCOLE

DISCO

Manifestation avec acte : Modélisation des Systèmes Réactifs ( MSR ) 2017 du 15 novembre au 17 novembre 2017, Marseille (France), Novembre 2017, 14p. , N° 17579

Lien : https://hal.laas.fr/hal-01710331

Diffusable

Plus d'informations

Résumé

L'automatisation du diagnostic de pannes dans les systèmes industriels tels que les sys-tèmes manufacturiers ou de transport souvent modélisés par des Systèmes à Evénements Discrets (SED) est un enjeu majeur. Il est nécessaire de déterminer rapidement les pro-blèmes sur les équipements afin de les réparer au plus tôt et ainsi maximiser le temps opérationnel et productif du système. Parmi les différents types de pannes, les pertes de performances temporelles sont régulièrement rencontrées comme par exemple une baisse du taux de production de pièces dans un système d'assemblage ou encore un ralentissement de convoyeurs dans un réseau de transport de bagages dans un aéroport. Ces problèmes ne sont pas facilement modélisables avec les méthodes de diagnostic à base de modèles à événements discrets connues à ce jour si bien que les outils classiques de diagnostic ne sont a priori pas bien adaptés pour en déterminer la ou les causes. L'objectif de cet article est de proposer une méthode de détection et de localisation de fautes temporelles pour une classe de SED temporisés appelés systèmes (max, +)-linéaires. Ce type de système permettant la représentation de phénomènes de synchronisation entre ressources, de durées d'opération et de temps de transmission, est particulièrement bien adapté pour identifier des décalages temporels non souhaités typiques des problèmes dans les procédés industriels. La méthode proposée se déroule en plusieurs étapes. A partir d'un flux d'observations temporisées, le problème consiste tout d'abord à déterminer si ce flux résulte d'un compor-tement en présence d'une faute temporelle ou non. Des indicateurs de fautes sont utilisés pour répondre à cette question et reposent sur l'utilisation de la théorie de la résiduation appliquée aux systèmes (max, +)-linéaires. Si la faute est détectée, il est alors nécessaire de la localiser au mieux dans le système. Les fautes temporelles potentielles sont donc répertoriées et ajoutées au modèle (max, +) du système en comportement normal. En-suite, de manière analogue à la théorie classique du diagnostic dans les systèmes à temps continu, des matrices de signatures sont proposées et permettent de déterminer les fautes candidates expliquant les observations.

142681
17155
17/11/2017

Diagnostic de motifs de comportements dans les systèmes temporels

Y.PENCOLE, A.SUBIAS

DISCO

Manifestation avec acte : Modélisation des Systèmes Réactifs ( MSR ) 2017 du 15 novembre au 17 novembre 2017, Marseille (France), Novembre 2017, 14p. , N° 17155

Diffusable

141592
16125
24/10/2017

Root cause analysis of actuator fault based on invertibility of interconnected system

M.ZHANG, Z.LI, M.CABASSUD, B.DAHHOU

LGC, GUIZHOU, DISCO

Revue Scientifique : International Journal of Modelling, Identification and Control, Vol.27, N°4, pp.256-270, Octobre 2017 , N° 16125

Lien : https://hal.archives-ouvertes.fr/hal-01763870

Diffusable

Plus d'informations

Abstract

This paper addresses the problem of root cause analysis (RCA) of actuator fault. By considering an actuator as an individual dynamic subsystem connected with process dynamic subsystem in cascade, an interconnected system is then constituted. The fault detection and diagnosis (FDD) algorithm is carried out in actuator subsystem and aims at identifying the root causes of actuator faults. According to real plant, outputs of the actuator subsystem are assumed inaccessible and are reconstructed by measurements of the global system, thus providing a means of monitoring and diagnosis of the plant at both local and global level. A condition of invertibility of the interconnected system is first developed to guarantee that faults occurring in the actuator subsystem will affect the measured output of the global system distinguishably. For that, a necessary and sufficient condition is proposed to ensure invertibility of the interconnected system. Effectiveness of the proposed approach is demonstrated on an intensified HEX reactor.

141340
17373
18/10/2017

Alarm management via temporal pattern learning

J.VASQUEZ, A.SUBIAS, L.TRAVE-MASSUYES, F.JIMENEZ

DISCO, Univ. de Los Andes

Revue Scientifique : Engineering Applications of Artificial Intelligence, Vol.65, pp.506-516, Octobre 2017 , N° 17373

Lien : https://hal.laas.fr/hal-01611635

Diffusable

Plus d'informations

Abstract

Industrial plant safety involves integrated management of all the factors that may cause accidents. Process alarm management can be formulated as a pattern recognition problem in which temporal patterns are used to characterize different typical situations, particularly at startup and shutdown stages. In this paper we propose a new approach of alarm management based on a diagnosis process. Assuming the alarms and the actions of the standard operating procedure as discrete events, the diagnosis step relies on situation recognition to provide the operators with relevant information on the failures inducing the alarm flows. The situation recognition is based on chronicle recognition where we propose to use the hybrid causal model of the system and simulations to generate the representative event sequences from which the chronicles are learned using the Heuristic Chronicle Discovery Algorithm Modified (HCDAM). An extension of this algorithm is presented in this article where the expertise knowledge is included as temporal restrictions which are a new input to HCDAM. An illustrative example in the field of petrochemical plants is presented.

141255
17411
13/10/2017

Chronicle based alarm management

J.VASQUEZ

DISCO

Doctorat : INSA de Toulouse, 13 Octobre 2017, 170p., Président: F.MUNOZ, Rapporteurs: C.V.ISAZA, M.LE GOC, Examinateurs: L.TRAVE-MASSUYES, Directeurs de thèse: A.SUBIAS, F.JIMENEZ , N° 17411

Lien : https://hal.laas.fr/tel-01660820

Diffusable

Plus d'informations

Résumé

Ce travail de thèse a été réalisé dans le cadre d’une thèse en co-tutelle entre l’INSA, Toulouse, et l’Université des Andes, Colombie, avec un financement de Colciencias. Ce travail est motivé par la nécessité pour l’industrie de détecter des situations anormales pendant les phases de démarrage et d’arrêt des installations. La sécurité des installations industrielles implique une gestion intégrée de tous les facteurs et événements pouvant causer des accidents. La gestion des alarmes peut être formulée comme un problème de reconnaissance de motifs événementiels dans lequel des modèles temporels sont utilisés pour caractériser différentes situations typiques, en particulier pendant les phases de démarrage et d’arrêt. Dans cette thèse une nouvelle approche de gestion des alarmes basée sur un processus de diagnostic est proposée. En supposant que les alarmes et les actions du mode opératoire standard sont des événements discrets, l’étape de diagnostic repose sur la reconnaissance de situation pour fournir aux opérateurs des informations pertinentes sur les défaillances induisant le flux d’alarmes. La reconnaissance de situation est basée sur des chroniques qui caractérisent les situations d’interdit et qui sont apprises de manière automatique. Les chroniques sont apprises à partir de séquences d’événements représentatives obtenues par simulation et constituant l’entrée d’une version étendue de l’Algorithme de Découverte de Chroniques Heuristique Modifié (HCDAM). HCDAM a été étendu dans cette thèse pour prendre en compte des connaissances expertes sous la forme de restrictions temporelles spécifiques. Un modèles hybride causal du procédé est utilisé pour vérifier les séquences d’entrée et pour expliquer et donner du sens aux chroniques apprises. La méthodologie de gestion des alarmes basée sur des chroniques CBAM (comme Chronicle Based Alarm Management ) proposée dans cette thèse fusionne différentes techniques pour tenir compte de l’aspect hybride et des procédures opérationnelles standard des processus concernés. Comparée aux autres approches de gestion d’alarmes, cette approche se caractérise par l’utilisation de l’information sur les actions procédurales liées au comportement des variables continues dans un processus formel de diagnostic. Des informations spécifiques sont obtenues à chaque étape de la méthodologie CBAM qui se résume en trois étapes : 1. Étape 1 : Identification du type d’événement à partir des procédures d’exploitation standard et de l’évolution des variables continues, cette étape détermine l’ensemble des types d’événements pendant les phases de démarrage et d’arrêt. 2. Étape 2 : Génération de séquence d’événements à partir de l’expertise et d’une procédure d’abstraction événementielle, cette étape détermine la date d’apparition de chaque type d’événement pour la construction des séquences d’événements représentatives. Une séquence d’événements représentatifs est l’ensemble des types d’événements avec leurs dates d’occurrence qui peuvent être associées à un scénario spécifique du processus. Cette étape se conclut avec la vérification des séquences d’événements représentatives à l’aide du modèle causal hybride. 3. Étape 3 : Construction de la base de chroniques à partir des séquences d’événements représentatives et des restrictions temporelles dans chaque scénario, cette étape détermine la base de chroniques à l’aide de l’algorithme HCDAM. La methode proposée pour la gestion des alarmes est illustrée par deux cas d’etude representatifs du domaine pétrochimique.

Abstract

This thesis work was carried out in the framework of a co-tutelle between INSA, Toulouse, and the University of the Andes, Colombia, with financial support of Colciencias. This work is motivated by the need of the industry to detect abnormal situations in the plant startup and shutdown stages. Industrial plants involve integrated management of all the events that may cause accidents and translate into alarms. Process alarm management can be formulated as an event-based pattern recognition problem in which temporal patterns are used to characterize different typical situations, particularly at startup and shutdown stages. In this thesis, a new approach for alarm management based on a diagnosis process is proposed. Considering the alarms and the actions of the standard operating procedure as discrete events, the diagnosis step relies on situation recognition to provide the operators with relevant information about the failures inducing the alarm flow. The situation recognition is based on chronicles that characterize the situations of interest and are learned automatically. The chronicles are learned from representative event sequences obtained by simulation and given as input to an extended version of the Heuristic Chronicle Discovery Algorithm Modified (HCDAM). HCDAM has been extended in this thesis to account for expert knowledge in the form of specific temporal restrictions. A hybrid causal model of the process is used to verify the input event sequences and to explain and provide semantics to the learned chronicles. The Chronicle Based Alarm Management (CBAM) methodology proposed in this thesis involves different techniques to take the hybrid aspect and the standard operational procedures of the concerned processes into account. Compared to other approaches of alarm management, this approach uses information about the procedural actions related to the continuous variables behavior in a formal diagnosis process. Specific information is obtained in each step of the CBAM methodology, and it is summarized in three steps: 1. Step 1: Event type identification From the standard operating procedures and from the evolution of the continuous variables, this step determines the set of event types in startup and shutdown stages. 2. Step 2: Event sequence generation From the expertise and an event abstraction procedure this step determines the date of occurrence of each event type for constructing the representative event sequences. A representative event sequence is the set of event types with their dates of occurrence that can be associated to a specific scenario of the process. This step concludes verifying the representative event sequences using the hybrid causal graph. 3. Step 3: Chronicle database construction From the representative event sequences and temporal restrictions of each scenario, this step determines the chronicle database using the extended HCDAM algorithm. The proposed framework for alarm management is illustrated with two case studies representative of the petrochemical field.

141513
17408
05/10/2017

HPPN-based prognosis for hybrid systems

P.RIBOT, E.CHANTHERY, Q.GAUDEL

DISCO

Manifestation avec acte : Annual Conference of the Prognostics and Health Management Society ( PHM ) 2017 du 02 octobre au 05 octobre 2017, St Petersbourg (USA), Octobre 2017, 10p. , N° 17408

Lien : https://hal.archives-ouvertes.fr/hal-01579483

Diffusable

Plus d'informations

Abstract

This paper presents a model-based prognosis method for hybrid systems i.e. that have both discrete and continuous behaviors. The current state of the hybrid system is estimated by a diagnosis process and the prognosis process uses this state estimation to predict the future states and to determine the end of life (EOL) or the remaining useful life (RUL) of the system. The Hybrid Particle Petri Nets (HPPN) formalism is used to model the hybrid system behavior and degradation. A HPPN-based diagnoser has already been defined to provide a current state estimation that takes uncertainty about the system model and observations into account. We propose to generate a prognoser from the HPPN model of the system. This prognoser is initialized and updated with the result of the HPPN-based diagnoser. It computes a distribution of beliefs over the future mode trajectories of the system and predicts the system RUL/EOL. The prognosis methodology is demonstrated on a three tanks example.

141456
Les informations recueillies font l’objet d’un traitement informatique destiné à des statistiques d'utilisation du formulaire de recherche dans la base de données des publications scientifiques. Les destinataires des données sont : le service de documentation du LAAS.Conformément à la loi « informatique et libertés » du 6 janvier 1978 modifiée en 2004, vous bénéficiez d’un droit d’accès et de rectification aux informations qui vous concernent, que vous pouvez exercer en vous adressant à
Pour recevoir une copie des documents, contacter doc@laas.fr en mentionnant le n° de rapport LAAS et votre adresse postale. Signalez tout problème de dysfonctionnement à sysadmin@laas.fr. http://www.laas.fr/pulman/pulman-isens/web/app.php/