Retour au site du LAAS-CNRS

Laboratoire d’analyse et d’architecture des systèmes
Choisir la langue : FR | EN

44documents trouvés

17452
28/11/2017

Functionalized double-walled carbon nanotubes for integrated gas sensors

L.YANG

ELIA

Doctorat : Université de Toulouse III - Paul Sabatier, 28 Novembre 2017, 145p., Président: K.ARAUJO-GUERIN, Rapporteurs: C.DEJOUS, M.ARAB, Examinateurs: G.VIAU, Directeurs de thèse: V.VIEU, E.FLAHAUT , N° 17452

Lien : https://hal.laas.fr/tel-01675535

Diffusable

Plus d'informations

Résumé

Nous proposons dans ce travail une méthode robuste et bas-coût afin de fabriquer des détecteurs de gaz à base de Nanotubes de Carbone bi-parois (DWCNTs) chimiquement fonctionnalisés. Ces nano-objets (DWCNTs) sont synthétisés par dépôt catalytique en phase vapeur (CCVD), puis purifiés avant d’être oxydés ou bien fonctionnalisés par des terminaisons fluorées ou aminées. Les dispositifs de détection électriques ont été fabriqués par lithographie douce en utilisant un pochoir de PDMS (Poly-DiMethyl Siloxane) et un dépôt en phase liquide à la pipette d’une suspension aqueuse contenant les nanotubes fonctionnalisés, rinçage puis séchage à l’azote sec. Chaque dispositif (1 cm X 2 cm) est équipé d’un jeu de 7 résistors à base de DWCNTs. Chaque résistor peut accueillir des nanotubes fonctionnalisés par une entité chimique différente afin de cibler un gaz spécifique, permettant ainsi une détection multiplexée. En raison de leur faible encombrement et la possibilité de les fabriquer sur tout type de substrat y compris des substrats souples, ces détecteurs pourraient être utilisés pour une large gamme d’applications et notamment les détecteurs de gaz portatifs et intégrés. La résistance électrique des résistors s’avère décroître avec la température suggérant une conduction électrique gouvernée par l’effet tunnel et les fluctuations au sein du tapis désordonné de nanotubes de carbone. Nous avons cependant montré dans ce travail que pour des applications réelles de détection de gaz, une régulation thermique des dispositifs n’est pas nécessaire car les variations de résistance engendrées par l’adsorption de molécules de gaz sont significativement plus grandes que les variations causées par de possibles fluctuations de température. Les dispositifs produits présentent un caractère métallique à température ambiante et pour des applications de détection de gaz nous avons sélectionné des dispositifs présentant des résistances inférieures à 100 kΩ. Le principe de base de la détection de gaz étant basé sur la mesure directe de la résistance électrique du dispositif, la consommation électrique de ces dispositifs reste faible (<1 μW). La réponse des dispositifs à base de nanotubes de carbone non fonctionnalisés aux analytes testés (éthanol, acétone, ammoniac et vapeur d’eau) est faible. Les nanotubes de carbone fonctionnalisés présentent quant à eux, une réponse modérée à la vapeur d’eau, à l’éthanol et à l’acétone mais montrent une sensibilité excellente à l’ammoniac. En particulier, les nanotubes de carbone oxydés se sont avérés capables de détecter des concentrations sub-ppm d’ammoniac en présence de vapeur d’eau en excès et à température ambiante et ont montré une grande stabilité dans le temps même pour des expositions de gaz répétées. Nous pensons que les groupes chimiques fonctionnels ancrés à la surface des nanotubes de carbone modifient les interactions entre les molécules de gaz et les nanotubes et que le transfert de charges induit provoque les modifications de la conductance électrique du système. Nous avons construit un modèle phénoménologique pour analyser les réponses électriques de nos dispositifs lors de l’exposition d’un gaz. Ce modèle prend en compte une variation exponentielle de la résistance au cours du temps puis un régime d’accroissement linéaire de cette résistance. Nous montrons en particulier que la constante de temps extraite du régime exponentiel est très informative sur la sensibilité et la sélectivité du détecteur de gaz. Nous avons finalement testé nos dispositifs pour des applications représentatives comme par exemple la détection de traces d’ammoniac qui ont pu être aisément réalisées à des concentrations bien inférieures au seuil de détection du nez humain (0.04ppm). En raison de leur grande stabilité, facilité de fabrication (design très simple, technologies de fabrication bas coût, intégration sur substrats souples), robustesse (détection possible en présence de vapeur d’eau et résiliente aux fluctuations thermiques) et en raison de la faible quantité de nanotubes de Carbone nécessaire, nous pensons que nos résultats sont intéressants pour des applications de masse concernant des détecteurs de gaz portables pour l’industrie des technologies de l’information et de la communication.

Abstract

We have successfully fabricated gas sensors based on chemically functionalized double-wall carbon nanotubes (DWCNTs) using a robust and low cost process. The DWCNTs were synthesized by catalytic chemical vapor deposition (CCVD) method. They were then purified before functionalization (oxidation, amination, and fluorination). The sensor devices were fabricated by soft lithography using PDMS (Poly-DiMethylSiloxane) stencils and liquid phase pipetting of a suspension of chemically functionalized DWCNTs in deionized water, rinsing and finally drying in a nitrogen flow. Each device (1 cm x 2 cm) is equipped with a set of 7 DWCNT based resistors. Each resistor can accommodate a precise chemical functionalization for targeting a specific gas species, allowing a multiplexed (up to 7) detection. Due to their small size and the possibility to fabricate them on soft substrates, they could be used for many kinds of applications including wearable devices. The electrical resistance of the produced resistors turned out to decrease with temperature, suggesting fluctuations induced tunneling conduction through the disordered network of metallic nanotubes. However, we have shown in our work that for realistic applications, gas sensing can be achieved without any temperature regulation of our devices, because the variations of electrical conductance caused by gas molecules adsorption are significantly larger than those caused by possible temperature fluctuations. The as fabricated devices exhibit at room temperature a metallic conducting behavior. Devices with a resistance less than 100 kΩ were selected for gas detection. Because the sensing principle is based on the direct measurement of the resistance, our scheme ensures low power consumption (<1 μW). Raw (not functionalized) DWCNTs-based gas sensors exhibited a low sensitivity to the tested analytes, including ethanol, acetone, ammonia and water vapor. Functionalized DWCNTs-based gas sensors exhibited a moderate sensitivity to ethanol, acetone and water vapor but the response to ammonia, even in the presence of additional water vapor, was excellent. In particular, oxidized DWCNTs based gas sensors exhibited a high stability in the case of prolonged and repeated gas exposures. The oxidized DWCNTs gas sensors were also able to detect ammonia vapor at sub-ppm concentration in the presence of water vapor at high concentration. We believe that the functional groups grafted to the DWCNTs modify the interaction between gas molecules and DWCNTs and that the induced charge transfer is responsible for the modification of the electrical conductivity. We have built a simple phenomenological model for the analysis of the sensing response curve. This model includes two components for the variations of electrical resistance during gas exposure, an exponential regime and a linear one. In particular, the time constant extracted from the exponential part of the response was found to be informative on devices' sensitivity and selectivity. Finally, we tested our sensors for realistic applications such as trace detection of ammonia, which could be easily detected while far below the detection threshold of human nose (0.04ppm) Due to the high stability, ease of fabrication (very simple design, use of low-cost technologies, integration on flexible substrates), robustness (detection in the presence of a large excess of water vapor and resilient to temperature fluctuations) and extremely low amounts of carbon nanotube required, we expect these results to have some potential for a wide range of mass applications in the field of wearable gas sensors for Information and Communication Technologies (ICT) industry.

141773
17425
17/10/2017

Développement d’un capteur à base de polymère à empreintes moléculaires pour la quantification de la sphingosine 1-phosphate libre et circulante comme biomarqueur du mélanome cutané

M.SAHUN

ELIA

Doctorat : Université de Toulouse III - Paul Sabatier, 17 Octobre 2017, 155p., Président: T.LEVADE, Rapporteurs: L.DUMA, O.SOPPERA, C.MASQUEFA, Examinateurs: J.FITREMANN, Directeurs de thèse: N.ANDRIEU-ABADIE, A.CERF , N° 17425

Lien : https://hal.laas.fr/tel-01660830

Diffusable

Plus d'informations

Abstract

Melanoma is the most aggressive and severe form of cutaneous cancer due to its high metastatic potential. However, to date, no marker for the early detection of melanoma has been unanimously accepted. Our group has demonstrated that ceramide metabolism is strongly altered in melanoma, leading to the overproduction of sphingosine 1-phosphate (S1P), one of its derivatives. S1P is secreted by melanoma cells and has been identified as a critical molecule of tumor microenvironment remodeling that supports cancer progression. Physiologically, circulating S1P is predominantly linked to high density lipoproteins (HDLs), low and very low density lipoproteins (LDLs and VLDLs), as well as albumin. Melanoma cells produce unbound S1P that could be responsible for the effects induced by this lysophospholipid on the tumor microenvironment, as a result of its binding to S1PR receptors present on the surface of stromal cells. Thus, secreted tumor S1P could represent a new biomarker for the early detection of melanoma. However, there are currently no means to quantify it. The goal of this interdisciplinary work was to develop a new sensor based on a Molecularly Imprinted Polymer (MIP) in order to quantify unbound S1P present in the blood of melanoma patients. This study has been conducted between the “Engineering for Life science Applications (EliA)” group at the Laboratory for Analysis and Architecture of Systems (LAAS) and the “Sphingolipids, metabolism, cell death and tumor progression” group at the Cancer Research Center of Toulouse (CRCT), in strong collaboration with the team “Biomimetism and Bioinspired Structures” of the University of Technology of Compiègne (UTC). First, we synthesized a new MIP against S1P employing a bulk thermopolymerization approach. The resulting MIP was characterized and optimized by performing both mass spectrometry and fluorescence spectroscopy measurements. It was compared to a Non Imprinted Polymer (NIP) and exposed to S1P analogues to assess its selectivity. Second, in order to use the MIP as the sensitive layer of a future sensor and prepare its immobilization and structuration onto a transducer, we synthesized a new surface photopolymerizable MIP. This MIP was first structured by photolithography onto silicon substrates and validated by fluorescence microscopy measurements. The MIP was also structured as a thin layer onto Quartz Crystal Microbalance (QCM) chips in order to validate its binding capacities using this label-free method. Finally, the use of a MIP-coated optical fiber as an infrared sensor was explored, with the aim of detecting S1P in blood using Attenuated Total Reflectance (ATR) spectroscopy.

Résumé

Le mélanome est le plus agressif et le plus sévère des cancers cutanés du fait de son fort potentiel métastatique. Pourtant à ce jour, aucun biomarqueur pour la détection précoce du mélanome n’est unanimement reconnu. Notre groupe a récemment démontré que le métabolisme du céramide est fortement altéré dès les premiers stades de la maladie, conduisant à l’augmentation de la production d’un dérivé du céramide, la sphingosine 1-phosphate (S1P). La S1P est sécrétée par les cellules du mélanome et a été identifiée comme une molécule majeure du remodelage du microenvironnement tumoral, qui favorise la progression du cancer. De façon physiologique, la S1P circulante se trouve majoritairement sous forme liée aux protéines de haute densité (HDLs), aux protéines de basse et très basse densité (LDLs et VLDLs) ainsi qu’à l’albumine. Les cellules de mélanome pourraient produire de la S1P non liée qui pourrait rendre compte des effets produits par ce lysosphopholipide sur les cellules du microenvironnement tumoral suite à sa fixation sur les récepteurs S1PR présents à la surface des cellules stromales. Ainsi, cette forme libre de S1P pourrait représenter un nouveau biomarqueur pour la détection précoce du mélanome. Cependant, il n’existe à l’heure actuelle aucun moyen permettant de la quantifier. Le but de ce travail interdisciplinaire a été de développer un nouveau capteur basé sur un polymère à empreintes moléculaires (MIP) dans le but de quantifier la S1P libre dans le sang de patients atteints de mélanome. Cette étude a été réalisée entre l’équipe « Ingénierie pour les sciences du vivant (ELiA) » du Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS), et l’équipe « Sphingolipides, métabolisme, mort cellulaire et progression tumorale » du Centre de Recherche en Cancérologie de Toulouse (CRCT), en étroite collaboration avec l’équipe « Biomimétisme et structures bioinspirées » de l’Université Technologique de Compiègne (UTC). Dans un premier temps, nous avons synthétisé un nouveau MIP dirigé contre la S1P par une méthode de thermopolymérisation en masse. Nous avons caractérisé puis optimisé ce MIP en effectuant des mesures de spectrométrie de masse couplée à la chromatographie en phase liquide et des mesures de spectroscopie de fluorescence. Le MIP a été comparé à un NIP (Non Imprinted Polymer) et exposé à des analogues de la S1P afin d’évaluer sa sélectivité. Dans un second temps, en vue de l’utilisation d’un MIP en tant que couche sensible d’un futur capteur et pour anticiper son immobilisation et sa structuration sur le transducteur, nous avons mis au point un nouveau MIP photopolymérisable en 2D. Ce MIP a d’abord été structuré en motifs par photolithographie sur des surfaces de silicium puis validé par des mesures de microscopie de fluorescence. Le MIP a également été structuré sous la forme de couches minces sur les surfaces actives de capteurs de Microbalance à Cristal de Quartz (QCM) dans le but de le valider par cette méthode sans marquage. Enfin, nous avons exploré l'utilisation d'une fibre optique recouverte d'une couche de MIP photopolymérisé dans le but de détecter, par spectroscopie infrarouge, la liaison de la S1P avec le MIP à la surface de la fibre.

Mots-Clés / Keywords
Mélanome cutané; Biomarqueurs; Sphingosine 1-Phosphate; Capteur;

141673
17352
28/09/2017

Optical feedbacksensinginmicrofluidics:designandcharacterizationof VCSEL-based compactsystems

Y.ZHAO

MICA, OSE

Doctorat : INSA de Toulouse, 28 Septembre 2017, 151p., Président: A.HUMEAU-HEURTIER, Rapporteurs: P.DEBERNARDI, S.ROYO, Examinateurs: M.NORGIA, Directeurs de thèse: V.BARDINAL DELAGNE, J.PERCHOUX , N° 17352

Diffusable

Plus d'informations

Résumé

L’interférométrie par retro-injection optique (OFI) est une technique de détection émergente pour les systèmes fluidiques. Son principe est basé sur la modulation de la puissance et/ou de la tension de polarisation d’une diode laser induites par interférence entre le faisceau propre de la cavité laser et la lumière réfléchie ou rétro-diffusée par une cible distante. Grâce à l’effet Doppler, cette technique permet de mesurer précisément la vitesse de particules en mouvement dans un fluide, et de répondre aux besoins croissants de mesure de débit dans les systèmes d’analyse biomédicale ou chimique. Dans cette thèse, les performances de la vélocimétrie par rétro-injection optique sont étudiées théoriquement et expérimentalement pour le cas de micro-canaux fluidiques. Un nouveau modèle numérique multi-physique (optique, optoélectronique et fluidique) est développé pour reproduire les spectres Doppler expérimentaux. En particulier, les effets de la concentration en particules, de la distribution angulaire de la diffusion du laser par les particules, ainsi que du profil d’écoulement dans le canal sont pris en compte. Un bon accord est obtenu entre les vitesses d’écoulement théoriques et expérimentales. Ce modèle est également appliqué avec succès à la mesure de la vitesse locale dans un micro-canal et à l’analyse de l’impact sur le signal des configurations particulières de canal. Enfin, la conception d’un capteur OFI tirant parti des avantages des Lasers à Cavité Verticale à Emission par la Surface (VCSEL) est proposée. Grâce au développement de techniques de microfabrication à base de matériaux polymères, un premier démonstrateur composé d’un VCSEL à lentille intégrée est réalisé et testé sans aucune optique macroscopique additionnelle. Les résultats obtenus en termes de mesure de flux sur des canaux micro-fluidiques de tailles différentes valident l’intérêt de cette approche et ouvrent la voie vers la réalisation de capteurs OFI ultra-compacts.

Abstract

Optical feedback interferometry (OFI) is an emerging sensing technique which has been studied in fluidic systems. This sensing scheme is based on the modulation of the laser emission output power and/or the junction voltage induced by the interaction between the back-scattered light from a distant target and the laser inner cavity light. Thanks to the Doppler Effect, OFI can precisely measure the velocity of seeding particles in flowing liquids which is much required in chemical engineering and biomedical fields. In the present thesis, optical feedback interferometry performance for microscale flow sensing is studied theoretically and experimentally. A new numerical modeling approach based on multi-physics numerical simulations for OFI signal simulation in the micro-scale flowmetry configuration is presented that highlight the sensor performances. In this model, many factors are involved such as particle concentration and laser-particle scattering angle distribution and flow velocity distribution. The flow rate measurement shows good agreement with the modeling. The implementation of OFI based sensors in multiple fluidic systems, investigating the impact of the fluidic chip specific configuration on the sensor signal. Finally, a compact OFI flowmetry sensor based on Vertical-Cavity Surface-Emitting Lasers (VCSELs) using micro optical fabrication techniques is demonstrated as well. The simulation method for the design and the microfabrication procedures are detailed. After an evaluation of the experimental results, the capabilities of this new OFI sensor in microfluidic measurements are emphasized, thus demonstrating an open path towards ultra-compact microfluidic systems based on the OFI sensing technique.

Mots-Clés / Keywords
Optical feedback interferometry; VCSEL; Microfluidics; Flow measurement; Doppler effect; Interférométrie par réinjection optique; Micro-fluidique; Mesure de débit; Effet doppler;

141153
17062
09/03/2017

Spectroscopie diélectrique HyperFréquence des cellules biologiques soumisee à l'électroporation

A.TAMRA

MH2F

Doctorat : Université de Toulouse III - Paul Sabatier, 9 Mars 2017, 164p., Président: S.YOSHIZAWA, Rapporteurs: O.FRANCAIS, P.RENAUD, Examinateurs: K.GRENIER, Directeurs de thèse: D.DUBUC, M.P.ROLS , N° 17062

Lien : https://hal.laas.fr/tel-01499406

Diffusable

Plus d'informations

Abstract

Electroporation is a physical process that consists in applying electric field pulses to transiently or permanently permeabilize the plasma membrane. This phenomenon is of great interest in the clinical field as well as in the industry because of its various applications, in particular electrochemotherapy which combines electrical pulses with the administration of a cytotoxic molecule in the treatment of tumors. The evaluation of this phenomenon is traditionally carried out using optical and biochemical methods (microscopy, flow cytometry, biochemical test). They are very effective but require the use of a wide range of fluorochromes and markers, which can be laborious and costly to implement, while being invasive to the cells. In recent years, the development of new biophysical tools for the study of electroporation has taken place, such as dielectrophoresis and impedance spectroscopy (low frequency). In addition to the ease of implementation, these methods are of interest in the study of membrane modifications of the cell. Hence the advantage of operating beyond the GHz, in the range of microwaves, for which the cytoplasmic membrane becomes transparent and the intracellular content is exposed. The extraction of the relative permittivity as a result of the electromagnetic field / biological cell interaction then reflects the cell state. This technique, microwave dielectric spectroscopy, is a relevant method for analyzing the effects of electroporation on cell viability. Moreover, it does not require any use of the exogenous molecules (non-invasive) and the measurements are directly carried out in the culture medium of the cells. Two objectives were defined during this thesis whose work is located at the interface between three scientific fields: cellular biology, microwave electronics and microtechnologies. The first objective concerns the transposition of conventional electroporation to the micrometric scale, which has shown an efficiency as efficient as the first. The second part of the work concerns the study by HighFrequency dielectric spectroscopy of cells subjected to different electrical treatments (combined or not with a cytotoxic molecule). This work presents a statistical power and shows a very good correlation (R2> 0.94) with standard techniques used in biology, which biologically validates the HF analysis method in the context of electroporation. This work also shows that microwave dielectric spectroscopy proves to be a powerful technique capable of revealing cell viability following chemical and / or electrical treatment. They open the way to 'non-invasive' analysis by hyper-frequency dielectric spectroscopy of electroporated cells in situ.

Résumé

L'électroporation est un procédé physique qui consiste à appliquer des impulsions de champ électrique pour perméabiliser de manière transitoire ou permanente la membrane plasmique. Ce phénomène est d'un grand intérêt dans le domaine clinique ainsi que dans l'industrie en raison de ses diverses applications, notamment l’électrochimiothérapie qui combine les impulsions électriques à l’administration d’une molécule cytotoxique, dans le cadre du traitement des tumeurs. L’analyse de ce phénomène est traditionnellement réalisée à l’aide des méthodes optique et biochimique (microscopie, cytométrie en flux, test biochimique). Elles sont très efficaces mais nécessitent l’utilisation d’une large gamme de fluorochromes et de marqueurs dont la mise en œuvre peut être laborieuse et coûteuse tout en ayant un caractère invasif aux cellules. Durant ces dernières années, le développement de nouveaux outils biophysiques pour l’étude de l’électroporation a pris place, tels que la diélectrophorèse et la spectroscopie d’impédance (basse fréquence). Outre une facilité de mise en œuvre, ces méthodes représentent un intérêt dans l’étude des modifications membranaires de la cellule. De là vient l’intérêt d’opérer au-delà du GHz, dans la gamme des micro-ondes, pour laquelle la membrane cytoplasmique devient transparente et le contenu intracellulaire est exposé. L’extraction de la permittivité relative suite à l’interaction champ électromagnétique/cellules biologiques reflète alors l’état cellulaire. Cette technique, la spectroscopie diélectrique hyperfréquence, se présente comme une méthode pertinente pour analyser les effets de l’électroporation sur la viabilité cellulaire. De plus, elle ne nécessite aucune utilisation des molécules exogènes (non-invasivité) et les mesures sont directement réalisées dans le milieu de culture des cellules. Deux objectifs ont été définis lors de cette thèse dont les travaux se situent à l’interface entre trois domaines scientifiques : la biologie cellulaire, l’électronique hyperfréquence et les micro-technologies. Le premier objectif concerne la transposition de l’électroporation conventionnelle à l’échelle micrométrique, qui a montré une efficacité aussi performante que la première. La deuxième partie du travail concerne l’étude par spectroscopie diélectrique HyperFréquence de cellules soumises à différents traitements électriques (combinés ou non à une molécule cytotoxique). Ces travaux présentent une puissance statistique et montrent une très bonne corrélation (R2 >0 .94) avec des techniques standards utilisées en biologie, ce qui valide ‘biologiquement’ la méthode d’analyse HF dans le contexte d’électroporation. Ces travaux montrent en outre que la spectroscopie diélectrique hyperfréquence s’avère être une technique puissante, capable de révéler la viabilité cellulaire suite à un traitement chimique et/ou électrique. Ils ouvrent la voie à l’analyse ‘non-invasive’ par spectroscopie diélectrique HyperFréquence de cellules électroporées in-situ.

Mots-Clés / Keywords
Analyse micro-onde; Electroporation; Biocapteur; Cellule unique; Microtechnologies; Perméabilisation membranaire; Spectroscopie diélectrique HyperFréquence;

139382
16405
05/12/2016

Conception and characterization of flexible microelectrodes for implantable neuroprosthetic development

A.LECOMTE

MEMS

Doctorat : INSA de Toulouse, 5 Décembre 2016, 160p., Président: J.GRISOLIA, Rapporteurs: L.BERDONDINI, G.MALLIARAS, Examinateurs: G.OFFRANC-PIRET, Directeurs de thèse: C.BERGAUD , N° 16405

Lien : https://hal.laas.fr/tel-01417209

Diffusable

Plus d'informations

Résumé

Les neuroprothèses sont un domaine de recherche visant à restaurer les fonctions de personnes atteintes de déficiences sensorielles ou motrices. Les implants neuraux assurent une communication bidirectionnelle entre le cerveau et les ordinateurs. Ils permettent par exemple de favoriser la communication et la mobilité des personnes présentant une déficience motrice grave, rétablir la perception sensorielle (vision, audition) et réduire des symptômes neurodégénératifs (Parkinson). Les dernières avancées technologiques et la meilleure compréhension des facteurs déclenchant les réactions inflammatoires permettent d’envisager des implants corticaux chroniques fiables. Les implants traditionnels, basés sur des matériaux rigides comme le silicium ou le tungstène, sont souvent associés à une réaction immunitaire importante, du fait de leur pauvre biocompatibilité et du stress qu'ils induisent sur les tissus environnants. En ce sens, les implants flexibles, basés sur des biomatériaux souples, sont de plus en plus étudiés. Le substrat s'adapte aux micromouvements du cerveau (respiration, pulsation cardiaque) et de se fait promouvoir un meilleur contact tout en diminuant la réaction inflammatoire. Au cours de cette thèse, nous avons conçu et fabriqué un implant flexible à base de Parylène C, polymère souple de plus haute classe de biocompatibilité atteinte par la législation américaine (USP Classe VI), sur lequel des électrodes en or sont positionnées. Divers procédés de la microélectronique, comme la photolithographie et la gravure plasma utilisés communément pour le développement de microsystèmes en métal ou semi-conducteurs, ont été adaptés à la structuration d'implants en Parylène C. Par le biais de la culture cellulaire in vitro, nous avons montré que des cellules neuronales dérivées se différenciaient correctement sur les implants, validant ainsi la biocompatibilité des dispositifs. Cependant, ces nouveaux implants ont tendance à se courber à la surface du cerveau lors de leur insertion, empêchant le bon déroulement de l'implantation. Nous proposons ici une méthode basée sur l'intégration d'un film biorésorbable à l'arrière de l'implant. Ce film rigide permet d'assurer la pénétration de l'implant dans les tissus cérébraux, avant de se dissoudre de façon inoffensive dans l'organisme. Le film est réalisé en fibroïne de soie, extrait des cocons de vers à soie. Ce matériau, plus résistant que le Kevlar, est utilisé depuis des millénaires comme fils de suture biodégradable. La mise au point de l'extraction de la fibroïne de soie et sa structuration sur l'implant à l'aide d'un moule en polymère, ainsi que l’optimisation de la méthode de dépôt permet l'obtention d'une couche de soie en forme de gouttière, ce qui facilite l’insertion tout en limitant les contraintes et pressions indésirables lors de l'insertion. Nous avons montré à travers une série de test in vitro dans des gels et in vivo sur souris, que la soie augmentait par 100 la rigidité de l'implant et pouvait se résorber à taux accordable dans l'organisme. Un aspect primordial des implants neuraux concerne leur tenue et leur fiabilité sur le long terme. Si les implants traditionnels en silicium sont matière à de nombreuses études sur le sujet, les implants en polymères souples ne se sont développés que récemment et ne bénéficient pas encore du même recul. Nous proposons une étude préliminaire in vitro dans du liquide cérébro-spinal artificiel et in vivo sur souris permettant de mettre en évidence l'augmentation de la durée de vie de nos implants. Les résultats ont montré qu'au bout de six mois, les dispositifs ne présentent pas de signe de délamination, corrosion ou gonflement, ce qui se caractérise par la stabilité des propriétés électriques des électrodes. En conclusion, les implants conçus au cours de cette thèse présentent des caractéristiques prometteuses pour le développement de neuroprothèses implantables flexibles fiables sur le long terme.

Mots-Clés / Keywords
Biomatériaux; Implantation chronique; Neuroprothèse; Polymère flexible;

138281
16445
26/11/2016

Développement de nano-systèmes à base de nanofils pour l'interfaçage neuronal

A.CASANOVA

MPN, MEMS

Doctorat : Université de Toulouse III - Paul Sabatier, Novembre 2016, 203p., Président: C.VILLARD, Rapporteurs: A.SOUIFI, C.PRINZ, Examinateurs: S.RENAUD, Directeurs de thèse: G.LARRIEU, L.NICU , N° 16445

Non diffusable

Plus d'informations

Abstract

Due to constant aging of world population, the struggle against neurodegenerative diseases is one of the major challenges in the near future and a better understanding of these pathologies goes through an improvement of basic mechanism knowledge involved in neuronal networks. In that scope, miniaturization of electronic components opens new perspectives for addressing such issues and holds great promise to improve the resolution levels. 1D-nanostructures such as NW-FET or NW-probes, offer real benefits thanks to their very small sections allowing to be less intrusive combined with their high surface-to-volume ratio leading to a higher affinity with cells. Here, we propose to co-integrate passive and active devices based on 1D nanostructures on the same platform (vertical NW probes and NW-FETs), to accurately compare advantages and drawbacks of each configuration regarding neuron electrical activity measurement. The two NW devices are fabricated with a large scale and cost effective top-down approach combining conventional lithography tools, plasma etching and sacrificial oxidation step to tune the nanostructure geometry. A core-shell-type device has been developed with a conductive part at the center, encapsulated by a conformal silicon oxide to insulate the probing nanostructures from liquid. In parallel, silicon NW-FETs are created with a planar NW channel (50 nm) connected by two highly doped low resistive regions. The device operation has been characterized in liquid environment (interface impedance of passive probes and pH sensing for transistors). Primary rat cortical neuronal cultures have been grown in-vitro with an unprecedented surface functionalization approach to precisely locate single neurons and guide the growth of their extensions. The approach allows the perfect location of somas on devices and the control of neurite growth at sub-micrometer scale. After 10 days-in-vitro, we detected for the first time spontaneous mammalian neuron action potentials using passive vertical NW-probes. Thereafter, several kinds of stimulation protocols have been implemented: (i) at the network level, with chemical stimulations such as KCl depolarization to mimic epileptic synchronization or with more refined stimulation (bicuculline). Local field potentials from few somas and action potentials from single neurons have been successfully recorded with a maximal signal-to-noise ratio of 10 for transistors compared to 40 for passive probes. (ii) At the cell level, where bi-directionality of passive probes have been used to locally trigger neuronal activity under electrical stimulation. Finally, multi-site recordings with vertical probes have been used to compare extra and intracellular probing.

Résumé

De par le vieillissement de la population mondiale, les maladies neurodégénératives touchent de plus en plus de personnes. Ces maladies, trouvant leur siège dans la plupart des cas au sein des neurones, restent mal comprises. Dans le but d’améliorer notre connaissance des dysfonctionnements causés lors de ce type d’agression, il est indispensable de raffiner notre analyse (neurones individuels). Les dispositifs à base de nanofils (nanosondes verticales ou transistors à NF) offrent une valeur ajoutée certaine concernant l'interfaçage de dispositifs nanoélectroniques avec les cellules vivantes. En effet, leurs sections sont beaucoup plus petites que les dimensions des cellules, les rendant peu intrusifs et leur grand rapport surface/volume permet une forte interaction NF-cellule. Dans ces travaux de thèse, nous proposons de co-intégrer ces deux types de capteurs passifs et actifs sur une même plateforme à l’aide d’un procédé basé sur une approche top-down, couplant des étapes de photolithographie conventionnelle et de gravure plasma. Afin de tirer parti de la dimension de ces capteurs, particulièrement adaptée à l’interfaçage de cellules individuelles, une approche innovante de fabrication de réseaux organisés de neurones par fonctionnalisation chimique de surface sera présentée. Basée sur l’auto-alignement de molécules d’adhésion grâce à un fort contraste hydrophile/hydrophobe de la surface de l’échantillon, elle permet de contrôler très précisément la localisation spatiale des somas et de guider la croissance des prolongements. De larges réseaux organisés de neurones ont ainsi pu être réalisés, avec un taux élevé de somas individuels (74% des sites occupés). La croissance des prolongements est également maîtrisée à l’échelle sub-micronique. Couplée aux dispositifs d’enregistrement présentés précédemment (nano-sondes passives et transistors à NF), cette maîtrise de la croissance des neurones ouvre de nombreuses perspectives pour le suivi multi-site de l’activité électrique au sein d’une culture neuronale. La chaîne d’acquisition nécessaire au transport de l’information enregistrée depuis le capteur (échelle nanométrique) jusqu’à la visualisation des signaux sera ensuite présentée. Des cultures de neurones ont été réalisées sur cette plateforme et une activité électrique spontanée (PAs et LFPs) a pu être enregistrée après 9DIV par les nanosondes passives. Ces résultats restent à ce jour, inédits avec de tels dispositifs passifs à nanofils sur des neurones de rongeurs. Plusieurs stimulations chimiques (dépolarisation KCl et potentialisation bicuculline) ont également été effectuées, permettant de valider le fonctionnement des transistors et de comparer les deux approches (passive et active). Le caractère multi-sites des enregistrements à l’aide des nanosondes a aussi été mis en évidence. Enfin, des stimulations électriques localisées à l’aide des nanosondes verticales ont été réalisées et des LFPs provenant de l’excitation des neurones voisins du capteur ont pu être enregistrés, démontrant ainsi la bidirectionnalité de l’interaction.

Mots-Clés / Keywords
Nanofils; Biocapteurs; Nano-sondes; Transistors; In-vitro; Cellules primaires; Nanowires; Biosensors; Neurons; Nano-probes; Primary cells;

138416
16472
22/11/2016

Lateral porous silicon membranes for planar microfluidic applications

Y.HE

MEMS

Doctorat : Université de Toulouse III - Paul Sabatier, 22 Novembre 2016, 147p., Président: F.MORANCHO, Rapporteurs: F.CUNIN, J.BRUGGER, Examinateurs: S.ARSCOTT, Directeurs de thèse: L.NICU, T.LEICHLE , N° 16472

Lien : https://hal.laas.fr/tel-01445669

Diffusable

Plus d'informations

Abstract

Lab on a chip devices aim at integrating functions routinely used in medical laboratories into miniaturized chips to target health care applications with a promising impact foreseen in point-of-care testing. Porous membranes are of great interest for on-chip sample preparation and analysis since they enable size- and charge-based molecule separation, but also molecule pre-concentration by ion concentration polarization. Out of the various materials available to constitute porous membranes, porous silicon offers many advantages, such as tunable pore size, large porosity, convenient surface chemistry and unique optical properties. Porous silicon membranes are usually integrated into fluidic chips by sandwiching fabricated membranes between two layers bearing inlet and outlet microchannels, resulting in three-dimensional fluidic networks that lack the simplicity of operation and direct observation accessibility of planar microfluidic devices. To tackle this constraint, we have developed two methods for the fabrication of lateral porous silicon membranes and their monolithic integration into planar microfluidics. The first method is based on the use of locally patterned electrodes to guide pore formation horizontally within the membrane in combination with silicon-on-insulator (SOI) substrates to spatially localize the porous silicon within the channel depth. The second method relies on the fact that the formation of porous silicon by anodization is highly dependent on the dopant type and concentration. While we still use electrodes patterned on the membrane sidewalls to inject current for anodization, the doping via implantation enables to confine the membrane analogously to but instead of the SOI buried oxide box. Membranes with lateral pores were successfully fabricated by these two methods and their functionality was demonstrated by conducting filtering experiments. In addition to sample filtration, we have achieved electrokinetic pre-concentration and interferometric sensing using the fabricated membranes. The ion selectivity of the microporous membrane enables to carry out sample pre-concentration by ion concentration polarization with concentration factors that can reach more than 103 in 10 min by applying less than 9 V across the membrane. These results are comparable to what has already been reported in the literature using e.g. nanochannels with much lower power consumption. Finally, we were able to detect a change of the porous silicon refractive index through the shift of interference spectrum upon loading different liquids into the membrane. The work presented in this dissertation constitutes the first step in demonstrating the interest of porous silicon for all-in-one sample preparation and biosensing into planar lab on a chip.

Mots-Clés / Keywords
Anodization; Filtration; Ion concentration polarization; Membranes; Microfluidics; Optical biosensors; Porous silicon;

138517
16442
15/11/2016

Conception et réalisation d'une nouvelle génération de ano-capteurs de gaz à base de nanofils semiconducteurs

B.DURAND

MICA, MPN

Doctorat : Université de Toulouse III - Paul Sabatier, 15 Novembre 2016, 206p., Président: P.AUSTIN, Rapporteurs: M.THCHERNYCHEVA, C.PIJOLAT, Examinateurs: Y.COOINIER, Directeurs de thèse: P.MENINI, G.LARRIEU , N° 16442

Lien : https://hal.laas.fr/tel-01417316

Diffusable

Plus d'informations

Abstract

In recent years, efforts of research and development for gas sensors converged to use nanomaterials to optimize performance. This new generation promises many advantages especially in miniaturization and reduction of energy consumption. Furthermore, the gas detection parameters (sensitivity, detection limit, response time ...) are improved due to the high surface/volume ratio of the sensitive part. Thus, this sensors can be integrated in ultrasensitive detection systems, autonomous, compact and transportable. In this thesis, we propose to use 3D semiconductor nanowires networks to create highly sensitive and selective gas sensors. The objective of this work is to provide a highly sensitive sensor, featuring a low detection limit (in the ppb range) and embeddable in CMOS devices. In addition process is generic and adaptable to many types of materials to discriminate several gas and converge to electronic nose. The first part of the dissertation is based on development of a large scale, reproducible, compatible with Si processing industry and conventional tools (CMOS), to obtain a sensor based on a 3D nanowire architecture. The device is composed by two symmetrical aluminum contacts at each extremity of the nanowires, including a top contact done by air bridge approach. The second part of this work presents the gas performances of components and working mechanisms associated. A very high response (30%) is obtained at 50 ppb of NO2, compare to the state of the art, 25% reached for 200 ppb. This approach can measure selectively very low concentrations of gas (<1 ppb) in real working conditions: moisture (tested up to 70% moisture) and mixing with other more concentrated gas (interfering gas). In addition, the reversibility of the sensor is natural and occurs at room temperature without requiring specific conditions.

Résumé

Au cours des dernières années, les efforts de recherche et de développement pour les capteurs de gaz se sont orientés vers l’intégration de nanomatériaux afin d’améliorer les performances des dispositifs. Ces nouvelles générations promettent de nombreux avantages notamment en matière de miniaturisation et de réduction de la consommation énergétique. Par ailleurs, la détection sous gaz (sensibilité, seuil de détection, temps de réponse, …) s’en retrouve améliorée à cause de l’augmentation du ratio surface/volume de la partie sensible. Ainsi, de tels capteurs peuvent être intégrés dans des systèmes de détections ultrasensibles, autonomes, compactes et transportables. Dans cette thèse, nous proposons d'utiliser des réseaux verticaux de nanofils semi-conducteurs pour créer des dispositifs de détection de gaz hautement sensibles, sélectifs, avec une faible limite de détection (de l’ordre du ppb) et intégrable dans des technologies CMOS, tout en étant générique et adaptable à plusieurs types de matériaux afin de discriminer plusieurs gaz. Une première partie expose la mise au point d’un procédé grande échelle, reproductible, compatible avec l’industrie actuelle des semi-conducteurs (CMOS), pour obtenir un capteur basé sur une architecture 3D à nanofils. Le dispositif est composé de deux contacts symétriques en aluminium à chaque extrémité des nanofils, dont l’un est obtenu par l’approche dite du « pont à air », permettant la définition d’un contact tridimensionnel au sommet du nanofil. La seconde partie présente les performances sous gaz des dispositifs développés et les mécanismes de fonctionnement. Le capteur démontre des performances record en matière de détection du dioxyde d’azote (30% à 50 ppb) en comparaison à l’état de l’art (25% à 200 ppb). De plus, cette approche permet de mesurer de très faibles concentrations de ce gaz (< 1 ppb) de manière sélective, dans des conditions proches des conditions réelles : humidité (testé jusqu’à 70% d’humidité) et mélange avec d’autres gaz plus concentrés et la réversibilité du capteur est naturelle et se fait à température ambiante sans nécessité des conditions particulières.

Mots-Clés / Keywords
Nanofils semiconducteurs; Capteur de gaz; Architecture 3D; CMOS; Détection de faibles concentrations (ppb); Dioxyde d’azote (NO2); Semiconductor nanowires; Gas sensors; 3D architecture; Low concentration detection (ppb); Nitrogen dioxide (NO2); Schottky contact;

138395
16390
28/10/2016

Sélection et capture de biomarqueurs moléculaires et cellulaires à partir d' un fluide complexe

H.CAYRON

ELIA

Doctorat : INSA de Toulouse, 28 Octobre 2016, 207p., Président: G.FAVRE, Rapporteurs: C.A.PANABIERES, I.SAGNES, Examinateurs: A.CERF, H.CRAIGHEAD, S.DESCROIX, J.MORAN-MIRABAL, Directeurs de thèse: C.VIEU , N° 16390

Lien : https://hal.laas.fr/tel-01417198

Diffusable

Plus d'informations

Abstract

In this XXIst century, medicine is gravitating towards the personalized care of a patient, this trend being manifested through the concept of precision medicine. In oncology particularly, the sampling of biological tissues from a tumor, or biopsy, is currently used for diagnostic purposes. Physicians are nowadays interested in the concept of “liquid biopsy”, reflecting the direct access to circulating biomarkers from various biofluids via a simple blood sampling for example, less invasive than tissue sampling, for the diagnostic and follow-up of pathologies. This research project focused on two technological approaches emerging from microfabrication for the selection and capture of circulating molecular and cellular biomarkers. At the molecular scale, this work was based on the automation of a directed capillary assembly protocol. A dedicated module was implemented into an automate for molecular stamping and validated using a simple molecular model, allowing the elongation and large-scale assembly of single biomolecules in a controlled and automatized manner. The developed technology was then used for the assembly of relevant molecular biomarkers such as cell-free DNA (cfDNA) from untreated whole blood, evidencing the capabilities of this technology to single out nucleic acids from complex fluids composed of other cellular elements. At the cellular scale, an innovative concept for Circulating Tumor Cells (CTCs) selection and capture was developed. The developed microdevice is fabricated using 3D direct laser writing and allows for a physical capture of cells from untreated whole blood while preserving them for further recovery and analysis. After having optimized the design in vitro to maximize the capture efficiency of the system, a selective capture of cancer cells from untreated whole blood was achieved. A first prototype for the in vivo use of this system was also developed and validated in vitro with cancer cells spiked into culture medium, opening up wide possibilities from an applicative and translational perspective.

Résumé

La médecine du XXIème se dirige vers une prise en charge individuelle du patient et s’inscrit dans un concept que l’on nomme médecine de précision. Dans le domaine de l’oncologie en particulier, les prélèvements tissulaires sur la tumeur, ou biopsie, sont couramment utilisés pour établir un diagnostic chez un patient donné. Les médecins s’intéressent de nos jours au concept de biopsie liquide, traduisant l’accès à des biomarqueurs circulants dans divers biofluides corporels via un simple prélèvement, sanguin par exemple, moins invasif que les prélèvements tissulaires dans le diagnostic et le suivi des pathologies. Ce travail de thèse s’est axé autour de deux approches technologiques issues du domaine de la microfabrication pour la sélection et la capture de biomarqueurs circulants, aux échelles moléculaire et cellulaire. A l’échelle moléculaire, ces travaux se sont axés sur l’automatisation d’un protocole d'assemblage capillaire dirigé. Un module a été implémenté dans un automate de tamponnage moléculaire puis validé en utilisant un modèle moléculaire simple, permettant l'isolement et l'étirement de biomolécules individuelles de manière entièrement contrôlée et automatisée à large échelle. Nous avons ensuite appliqué cette technologie à des biomarqueurs moléculaires d'intérêt tels que les ADN libres (cfDNA) contenus dans du sang complet, démontrant la capacité de la technique à isoler des acides nucléiques à partir d’un fluide complexe, ici parmi une population de cellules sanguines. A l’échelle cellulaire, une approche innovante pour la sélection et la capture de Cellules Tumorales Circulantes (CTCs) a été développée. Le microdispositif mis au point est fabriqué par écriture laser à 3 dimensions et permet le piégeage physique de ces cellules dans du sang complet non traité tout en les préservant pour une récupération et analyse ultérieure. Après adaptation du microdispositif pour maximiser son efficacité de capture in vitro, une première preuve de concept de capture sélective de cellules cancéreuses dans du sang complet non traité a été réalisée. Un premier prototype pour une utilisation in vivo a été mis au point et validé in vitro sur la capture de cellules cancéreuses dans du milieu de culture, ouvrant de larges perspectives au niveau applicatif et translationnel.

Mots-Clés / Keywords
Biomarqueurs; Microtechnologies; Assemblage capillaire; Biopsie liquide; Oncologie; Lithographie 3D; Biomarkers; Capillary assembly; Liquid biopsy; Oncology; 3D lithography;

138213
16383
11/10/2016

Propriétés biophysiques des cardiomyocytes vivants en condition physio/ physiopathologique et architecture des récepteurs couplés aux protéines G explorées par microscopie à force atomique

V.LACHAIZE

ELIA

Doctorat : Université de Toulouse III - Paul Sabatier, 11 Octobre 2016, 257p., Président: J.M.SENARD, Rapporteurs: S.LABDI, P.MANIVET, Examinateurs: S.EL-KIRAT-CHATEL, Directeurs de thèse: E.DAGUE, C.GALES , N° 16383

Lien : https://hal.laas.fr/tel-01416906

Diffusable

Plus d'informations

Abstract

Heart failure is a public health problem with 1 million patients this year in France. This pathology is defined inability to heart pump sufficiently to maintain blood flow to meet the body's needs. This decrease is explicated by the loss of contractile function of the heart, caused by the necrosis of the contractile cells: cardiomyocytes. In this study, I was able to study the topographic and biomechanical modification of the cardiomyocyte membrane upstream of its rupture during necrosis, by technology derived from nanosciences : atomic force microscopy (AFM). My work reveals a highly structured membrane in healthy cardiomyocytes and a loss of this architecture in an early stage of the heart failure installation. In a second study I was interested in the oligomeric organization of a transmembrane receptors family , G protein-coupled receptors. These proteins are a privileged target for the pharmacological treatments on heart failure such as beta- Blockers and vasodilators. This oligomerization mechanism could be the key to the side effects associated with treatments. In order to study the oligomeric conformation, I used single molecule force spectroscopy and I reveal different oligomeric populations of these receptors on the membrane. The results showed a oligomeric populations distribution according the conditions (plasmid density coding for receptors / stimulation with synthetic or natural agonist). It is possible that there is a regulation of the signaling pathways, using the oligomerization for specific activation receptors. The possible difference in activity of each oligomeric population (monomer / dimer / tetramer / hexamer) appears to be a plausible explanation for the side effects of pharmacological agents. My thesis work allowed the discovery of a new track by an innovative technology, atomic force microscopy, in the treatment of heart failure.

Résumé

L’insuffisance cardiaque est un réel problème de santé publique avec 1 millions de patients souffrant de cette pathologie cette année en France. Elle est définie incapacité de fournir un débit sanguin suffisant à l’organisme. Cette diminution de débit est traduite par la perte de fonction contractile du coeur provoqué par la nécrose des cellules responsable de cette fonction : les cardiomyocytes. Dans cette étude j’ai pu étudier les modifications topographiques et biomécaniques de la membrane du cardiomyocyte vivant en amont de sa rupture lors de la nécrose, par une technologie issue des nanosciences : la microscopie à force atomique (AFM). Mes travaux ont fait apparaitre une membrane très structurée chez le cardiomyocyte sain et une perte de cette architecture dans un temps précoce de l’installation de l’insuffisance cardiaque. L’utilisation de la microscopie électronique à transmission à montrer que les anomalies mises en évidences par AFM ont pour origine un réarrangement mitochondriale. Dans une seconde étude je me suis intéressée à l’organisation oligomérique d’une famille particulière de récepteur transmembranaire, les récepteurs couplés aux protéines G. Ces protéines sont une des cibles privilégiées pour les traitements pharmacologiques de l’insuffisance cardiaque tel que le bêta-bloquants et les vasodilatateurs. Ce mécanisme d’oligomérisation pourrait être la clef des effets secondaires liés à ces traitements. Afin d’étudier la conformation oligomérique, j’ai utilisé la spectroscopie de force à l’échelle de la molécule unique pour mettre en évidence différentes populations oligomérique de ces récepteurs sur la surface membranaire. Les résultats ont montré une distribution des populations oligomériques en fonction des conditions (densité de plasmide codants pour les récepteurs/stimulation avec agoniste synthétique ou naturel). Il est possible qu’il y ait une régulation des voies de signalisations par l’oligomérisation des récepteurs activés. La différence d’activité possible de chaque population oligomérique (monomère/dimère/tétramère/hexamère) semble être une explication plausible aux effets secondaire des agents pharmacologique. Mes travaux de thèse ont permis la mise en évidence de nouvelle piste par une technologie innovante, la microscopie à force atomique, dans le traitement de l’insuffisance cardiaque.

Mots-Clés / Keywords
Insuffisance cardiaque; Microscopie à force atomique; Cardiomyocytes; RCPG; Oligomérisation; Spectroscopie de force à l’échelle de la molécule unique; Heart failure; Atomic force microscopy; Oligomerization; Single molecule force spectroscopy;

138133
Les informations recueillies font l’objet d’un traitement informatique destiné à des statistiques d'utilisation du formulaire de recherche dans la base de données des publications scientifiques. Les destinataires des données sont : le service de documentation du LAAS.Conformément à la loi « informatique et libertés » du 6 janvier 1978 modifiée en 2004, vous bénéficiez d’un droit d’accès et de rectification aux informations qui vous concernent, que vous pouvez exercer en vous adressant à
Pour recevoir une copie des documents, contacter doc@laas.fr en mentionnant le n° de rapport LAAS et votre adresse postale. Signalez tout problème de dysfonctionnement à sysadmin@laas.fr. http://www.laas.fr/pulman/pulman-isens/web/app.php/