Retour au site du LAAS-CNRS

Laboratoire d’analyse et d’architecture des systèmes
Choisir la langue : FR | EN

11documents trouvés

17122
26/04/2017

Optimisation de blocs constitutifs d’un convertisseur A/N pipeline en technologie CMOS 0.18µm pour utilisation en environnement spatial

L.PERBET

OSE

Doctorat : INP de Toulouse, 26 Avril 2017, 196p., Président: J.D.LEGAT, Rapporteurs: Y.DEVAL, P.NOUET, Examinateurs: O.BERNAL, Directeur de thèse: H.TAP , N° 17122

Lien : https://hal.laas.fr/tel-01524918

Diffusable

Plus d'informations

Abstract

Imaging is a major issue in the observation of the Universe and the Earth from space, whether in the visible domain or not. Thus, in the spatial field, data is often gathered by a CCD (charge-Coupled Device) sensor, that supplies analog voltages to an Analog-to-Digital Converter (ADC), which outputs will be delivered to a processing chain, and then sent to earth. Consequently, ADCs are key elements in satellite imaging. Their precision and speed will indeed define the quality and the representativeness of the binary signal. It is then crucial to perform a high quality (speed & precision) conversion of the data, while making sure that the ADC can cope with the harsh irradiative environment. The purpose of this thesis is to improve the robustness to the space environment (hardening), while optimizing the performances, of several elementary devices that compose a 14 bits, 5MS/s pipeline ADC, made with the XFAB 180nm technology. The three targeted functions are the switches (especially the problems linked to coping with the charge injection problems in a space environment), the comparators (hardening) and the switched-capacitor amplifier (gain boosting through a predictive architecture with no penalty on the power consumption).

Résumé

L’imagerie constitue un axe majeur de l’exploration de l’univers et de la Terre depuis l’espace, que l’on se trouve dans le domaine du visible ou non. Ainsi dans le domaine spatial, les données sont le plus souvent récupérées par un capteur CCD (Charge-Coupled Device, ou Dispositif à Transfert de Charge (DTC)) qui fournit des tensions analogiques vers un convertisseur analogique-numérique (CAN), dont la sortie sera transmise à une chaîne de traitement, puis envoyée sur terre. Ainsi, les CAN sont des éléments clés dans l’imagerie par satellite. De leur précision et de leur vitesse va dépendre la qualité de la représentativité de la chaîne de signaux binaires. Il est donc crucial de réaliser une conversion de données de grande qualité (vitesse, précision) tout en s’assurant de la résistance du CAN à l’environnement radiatif. L’objectif de cette thèse est d’améliorer la robustesse à l’environnement spatial, tout en optimisant les performances, de plusieurs fonctions élémentaire d’un convertisseur analogique-numérique de type pipeline 14bits, 5MS/s, réalisées en technologie XFAB 0,18μm. Les trois fonctions ciblées sont les interrupteurs (notamment la résolution des problèmes liés au phénomène d’injection de charges en environnement spatial), les comparateurs (durcissement) et l’amplificateur à capacités commutées (amélioration du gain par une technique prédictive sans pénaliser la puissance consommée).

Mots-Clés / Keywords
Amplificateur; ASIC; CMOS; Comparateur; Convertisseur analogique-numérique; Environnement spatial; Interrupteur;

139793
16367
29/09/2016

Implementation of optical feedback interferometry for sensing applications in fluidic systems

E.E.RAMIREZ MIQUET

OSE

Doctorat : INP de Toulouse, 29 Septembre 2016, 139p., Président: A.HUMEAU HEURTIER, Rapporteurs: E.LACOT, A.LE DUFF, Examinateurs: K.LOUBIERE, Directeurs de thèse: J.PERCHOUX, O.SOTOLONGO COSTA, Membre invité: T.BOSCH , N° 16367

Lien : https://hal.archives-ouvertes.fr/tel-01389536

Diffusable

Plus d'informations

Résumé

L'interférométrie par réinjection optique est une technique de mesure dont l'implémentation pour l'interrogation de systèmes fluidiques est assez récente. Le principe de mesure est basé sur la perturbation des paramètres d'émission du laser induite par la réinjection dans la cavité laser de lumière rétro - diffusée par une cible distante. La technique p ermet le développement de capteurs compact et non - invasifs qui mesurent différents paramètres liés aux déplacements de la cible. En particulier, les interféromètres par réinjection optique prennent avantage de l'effet Doppler pour mesurer la vitesse de tra ceurs dans les liquides en écoulement. Cet aspect important de la technique de réinjection optique la rend adaptée à une grande variété d'applications dans les domaines du génie chimique et du biomédical où un contrôle des écoulements est requis. Cette thè se présente l'implémentation de capteurs basés sur la réinjection optique pour différents systèmes fluidiques où la vitesse locale d'écoulement ou le débit sont directement mesurés. Nous présentons une étude centrée sur les applications où la réinjection o ptique est utilisée pour la mesure du débit à la micro - échelle avec en particulier une analyse de la robustesse des méthodes de traitement du signal propres aux régimes de diffusion simple et de diffusion multiple. Par ailleurs, nous présentons des résulta ts expérimentaux de mesures ex vivo où le capteur par réinjection optique est proposé comme alternative pour la myographie. Nous présentons également une implémentation temps réel pour l’estimation du débit instantané d'écoulements dynamiques dans une conf iguration milli - fluidique. Un système semi - automatisé de détection de particule unique dans un micro - canal est proposé et démontré. Enfin, un capteur basé sur la réinjection optique est implémenté pour la caractérisation des interactions entre deux fluides immiscibles en écoulement à micro - échelle et les mesures réalisées sont comparées à un modèle développé afin de décrire le comportement hydrodynamique des deux fluides dans un micro - réacteur. Le manuscrit décrit une contribution importante pour l'implémen tation de capteur par réinjection optique pour des applications fluidiques et en particulier micro - fluidiques. Il présente également des résultats expérimentaux remarquables qui ouvrent de nouveaux horizons pour l'interférométrie à réinjection optique.

Abstract

Optical feedback interferometry is a sensing technique with relative recent implementation for the interrogation of fluidic systems. The sensing principle is based on the perturbation of the laser emission parameters induced by the reinjection in the laser cavity of light back-scattered from a distant target. The technique allows for the development of compact and non-invasive sensors that measure various parameters related to the motion of moving targets. In particular, optical feedback interferometers take advantage of the Doppler effect to measure the velocity of tracers in flowing liquids. These important features of the optical feedback interferometry technique make it well-suited for a variety of applications in chemical engineering and biomedical fields, where accurate monitoring of the flows is needed. This thesis presents the implementation of optical feedback interferometry based sensors in multiple fluidic systems where local velocity or flow rate are directly measured. We present an application-centered study of the optical feedback sensing technique used for flow measurement at the microscale with focus on the reliability of the signal processing methods for flows in the single and the multiple scattering regimes. Further, we present experimental results of ex vivo measurements where the optical feedback sensor is proposed as an alternative system for myography. In addition we present a real-time implementation for the assessment of non-steady flows in a millifluidic configuration. A semi-automatized system for single particle detection in a microchannel is proposed and demonstrated. Finally, an optical feedback based laser sensor is implemented for the characterization of the interactions between two immiscible liquid-liquid flowing at the microscale, and the measurement is compared to a theoretical model developed to describe the hydrodynamics of both fluids in a chemical microreactor. The present manuscript describes an important contribution to the implementation of optical feedback sensors for fluidic and microfluidic applications. It also presents remarkable experimental results that open new horizons to the optical feedback interferometry.

Mots-Clés / Keywords
Optical feedback interferometry; Laser diodes; Microfluidics; Flow measurement; Doppler effect; Interférométrie par réinjection optique; Diode laser; Micro-fluidique; Mesure de débit; Effet doppler;

137973
16586
20/09/2016

Analysis of the different signal acquisition schemes of an optical feedback based laser diode interferometer

J.AL ROUMY

OSE

Doctorat : INP de Toulouse, 20 Septembre 2016, 182p. , N° 16586

Lien : https://hal.archives-ouvertes.fr/tel-01418472

Diffusable

Plus d'informations

Abstract

The optical feedback interferometry phenomenon occurs when a portion of the output optical power is back-scattered from a remote target and coupled into the laser cavity to vary the laser’s emission properties (frequency and power mostly). Thus, this scheme results in a compact, self-aligned and contact-less interferometric sensor. Recent applications of optical feedback interferometer in the domains of microfluidics or acoustics have shown promising results and open new fields of researches. However in these applications, the amplitude of the sensing signal is extremely small due to the weakness of the backscattered power changes that are measured. In this thesis, an analytical model that describes the laser injection current and temperature dependence of the optical feedback interferometry signal strength for a single-mode laser diode has been derived from the Lang and Kobayashi rate equations. The model has been developed for all the known signal acquisition methods of the optical feedback interferometry scheme: from the package included monitoring photodiode, by collection of the laser power with an external photodetector and by amplification of the variations in the laser junction voltage. The model shows that both the photodiodes and the voltage signals strengths are related to the laser slope efficiency, which itself is a function of the laser injection current and of the temperature. Moreover, the model predicts different behaviors of the photodiodes and the voltage signal strengths with the change of the laser injection current and the temperature; an important result that has been proven by conducting measurements on all three signals for a wide range of injection current and temperature. Therefore, this simple model provides important insights into the radically different biasing strategies required to achieve optimal sensor sensitivity for the different interferometric signal acquisition schemes. In addition, the phase and amplitude relationships between the external and the in-package photodiode signals have been investigated theoretically and experimentally demonstrating unexpected results. Based on our model and on experimental observations, a critical study has been performed on the impact of the combination of the three signals in the signal processing strategy in order to improve the sensor sensibility to low amplitude optical feedback.

Résumé

Le phénomène d’interférométrie par réinjection optique se produit lorsqu’une portion de la puissance optique du laser est rétrodiffusée par une cible distante puis réinjectée dans la cavité laser ce qui affecte les propriétés d’émission du laser (fréquence et puissance en particulier). Ce principe résulte alors en un capteur interférométrique compact, auto-aligné et sans contact. Des applications récentes des capteurs par réinjection optique dans les domaines de la microfluidique et de l’acoustique ont montré des résultats prometteurs et ouvert de nouveaux domaines de recherche. Pourtant, dans le cadre de ces applications, l’amplitude du signal est extrêmement faible à cause de la faible amplitude des variations de la puissance rétrodiffusée qui est mesurée. Dans cette thèse, un modèle analytique décrivant la dépendance de l’amplitude du signal issu d’une diode laser monomode au courant d’injection et à la température est développé à partir des équations d’évolution de Lang et Kobayashi. Le modèle a été développé pour toutes les méthodes connues d’acquisition du signal interférométrique par réinjection optique : par la photodiode de monitoring incluse dans le boîtier de la diode laser, par la captation de la puissance optique au moyen d’un photodétecteur externe et par l’amplification de la tension aux bornes de la diode laser elle-même. Le modèle démontre que les signaux des photodiodes et de la tension sont liés à l’efficacité externe de la diode laser, qui elle-même est fonction du courant injecté et de la température. Qui plus est, le modèle prédit une évolution très différente de l’amplitude de ces différents signaux en fonction du courant d’injection ou de la température. Un résultat remarquable, confirmé par une campagne de mesures pour ces trois types de signaux sur une large plage de courants d’injection et de températures. Ainsi ce modèle simple permet une compréhension nouvelle des stratégies de polarisation très différentes de la diode laser permettant d’obtenir une sensibilité optimale du capteur dans les différents schémas d’acquisition du signal. Par ailleurs, les relations entre la phase et l’amplitude des signaux issus des photodiodes externes et de monitoring ont été étudiées sur le plan théorique et expérimental ce qui a permis de révéler des résultats inattendus. À partir du modèle et basé sur des observations expérimentales, une étude critique a été menée sur l’impact de la combinaison des trois signaux dans la stratégie de traitement du signal afin d’améliorer la sensibilité du capteur aux réinjections optiques de faible amplitude.

Mots-Clés / Keywords
Modélisation; Equations d'évolution; Capteur; Interférométrie par réinjection optique; Diode laser;

140073
15552
30/06/2015

Linéarisation à base de réseaux de neurones pour amplificateurs de puissance

B.MULLIEZ

OSE

Doctorat : INP de Toulouse, Juin 2015, 214p., Président: J.D.LEGAT, Rapporteurs: J.B.BEGUERET, P.NOUET, Examinateurs: O.BERNAL, L.GATET, Directrice de thèse: H.TAP , N° 15552

Lien : https://tel.archives-ouvertes.fr/tel-01241354

Diffusable

Plus d'informations

Abstract

The spectacular growth of space telecommunications during the last two decades requires an always higher data transmission speed and a flawless service quality. Nevertheless, in order to optimize the link budget and the spectral efficiency, the embedded High Power Amplifiers (HPA) are used close to their saturation point, which leads to strongly non-linear emitted signals. To circumvent this issue, a linearizer is often implemented before the amplifier. However, the linearization devices used today are not able adapt to different amplifiers or to HPA characteristics drift under the influence of aging and temperature variations : they are not adaptive. The objective of the work presented in this dissertation is the design of an innovating architecture capable of linearizing several HPA transfer characteristics. Analog Neural Networks (ANN) provide attractive performances for non-linear functions modelling and are reconfigurable. They are therefore a relevant choice to respond to this specific issue. First, a patented, innovating, generic, fast and accurate technique to determine the predistortion functions is detailed and used with the characteristics of three HPA provided by the French Space Agency (CNES). Then, the modelling of these predistortion functions with neural networks and behavioral static and dynamic simulations of these networks validate the concept of adaptive analog predistortion based on neural networks. Eventually, an analog predistortion ASIC, designed in a CMOS 0.35μm technology, including a neural network and an innovative configurable phase-shifting circuit, is described. The integrated circuit is able to generate the different predistortion functions and will be later embedded in a test-bench to demonstrate its ability to adaptively linearize several High Power Amplifiers.

Résumé

L’essor des télécommunications spatiales au cours des deux dernières décennies impose de transmettre les données à des débits toujours plus importants et avec une qualité de service irréprochable. Néanmoins, afin d’obtenir un bilan de liaison et une efficacité spectrale optimaux, l’amplificateur de puissance embarqué doit être utilisé près de sa zone de saturation, ce qui entraîne de fortes non-linéarités des signaux émis. Afin de contourner ce problème, les amplificateurs sont souvent précédés d’un linéariseur. Les dispositifs de linéarisation embarqués actuellement sont toutefois incapables de s’adapter à différents amplificateurs ou de prendre en compte les dérives des caractéristiques des amplificateurs au cours du temps et en fonction de la température : ils ne sont pas adaptatifs. L’objectif de cette thèse est de concevoir une architecture innovante capable de linéariser différentes caractéristiques de transfert d’amplificateurs de puissance. Les réseaux de neurones analogiques offrent des performances intéressantes d’approximation de fonctions non-linéaires et sont reconfigurables. Ils représentent donc une solution pertinente pour répondre à cette problématique. Tout d’abord, une technique innovante, générique, rapide et précise d’extraction des fonctions de prédistorsion, ayant fait l’objet d’un brevet, est présentée et appliquée aux caractéristiques de trois amplificateurs fournies par le CNES. La modélisation de ces fonctions de prédistorsion par des réseaux de neurones valide ensuite, grâce à des simulations comportementales statiques et dynamiques, le concept de prédistorsion analogique adaptative par réseaux de neurones. Enfin, un ASIC analogique de prédistorsion, développé en technologie CMOS 0, 35μm, comprenant un réseau de neurones et un circuit de déphasage réglable novateur est présenté. Le circuit, capable de générer les différentes fonctions de prédistorsion avec une grande précision, pourra par la suite être intégré dans un banc de test permettant de linéariser de manière adaptative divers amplificateurs de puissance afin d’en évaluer les performances réelles.

Mots-Clés / Keywords
Prédistorsion; Amplificateur de puissance; Réseau de neurones; CMOS; ASIC; Linearization; Predistortion; Power amplifier; Neural Networks; Linéarisation;

135850
14403
03/07/2014

Analysis and implementation of algorithms for embedded self-mixing displacement sensors design.

A.LUNA ARRIAGA

OSE

Doctorat : INP de Toulouse, 3 Juillet 2014, 181p., Président: J.C.VALIERE, Rapporteurs: G.PLANTIER, W.UHRING, Examinateurs: E.LACOT, Directeurs de thèse: T.BOSCH, F.BONY , N° 14403

Lien : http://tel.archives-ouvertes.fr/tel-01063295

Diffusable

Plus d'informations

Abstract

The interaction between an emitted laser beam and a small portion of backscattered light from a pointed target that re-enters the laser’s cavity, is at the origin of optical feedback phenomenon or self-mixing. Exploiting these unconventional interferometric fringes for non-contact sensors is attractive due to its minimal optical part-count and self-aligned nature. In this thesis we approach its development as a cost-e ective embedded implementation for displacement measurement. To this end we explored signal processing methods for fringe detection and target’s movement reconstruction, avoiding the usage of external components. We first identified some incompatibilities in prior algorithms from our research center, and then proposed further solutions. Based on interpolation theory, a simplified but proved real-time algorithm resulted for displacement reconstruction. Relying on analytical signal elaboration, an improved approach for phase calculation allowed us to provide a fringe detection algorithm robust to amplitude variations, disregarding the feedback regime and thus, allowing a seemly usage over an increased variety of applications.

Résumé

L’interaction entre un faisceau laser émis avec une partie de la lumière réfléchi depuis une cible qui rentre dans la cavité active du laser, est à l’origine du phénomène de rétro-injection optique ou self-mixing. L’utilisation de ces franges interférométriques non conventionnelles, semble attractive du au faible nombre des composant optiques et son caractère auto-aligné. Dans cette thèse nous approchons leur développement en tant qu’implémentation embarqué rentable pour la mesure du déplacement. A cette fin, nous avons exploré des méthodes du traitement du signal pour la détection des franges et la reconstruction du mouvement de la cible, en évitant l’usage de composant externes. Premièrement, nous avons identifié quelques incompatibilités dans des algorithmes précédentes établis dans notre centre de recherche, puis nous avons avancé des solutions. Fondé sur la théorie d’interpolation, an algorithme simplifié mais démontré convenable en temps-réel à été proposé pour la reconstruction du déplacement. En s’appuyant sur l’élaboration d’un signal analytique, il à été proposé une version amélioré pour le calcul de phase. Celle-ci nous à permit de fournir un algorithme pour la détection de franges, robuste aux variations d’amplitude, sans tenir compte du régime de rétro-injection, impliquant une convenable utilisation pour une variété d’applications.

Mots-Clés / Keywords
Self-mixing; Optical feedback interferometry; Displacement measurement; Laser diode sensor; Embedded systems; Digital signal processing; Interférométrie à rétro-injection optique; Mesure de déplacement; Capteur diode laser; Système embarqué; Traitement numérique du signal;

133101
14446
18/04/2014

Fiber optic sensors for metrology, geophysics and strain measurements

HC.SEAT

OSE

Habilitation à diriger des recherches : 18 Avril 2014, 90p., Président: J.CHERY, Rapporteurs: B.CULSHAW, P.PICART, L.ZHANG, Examinateurs: P.FERDINAND, G.PLANTIER, Référent: T.BOSCH , N° 14446

Lien : http://tel.archives-ouvertes.fr/tel-01068810

Diffusable

Plus d'informations

Résumé

Ce manuscrit d'Habilitation décrit les principales activités de recherche que je mène au sein du groupe Optoélectronique pour les Systèmes Embarqués du LAAS depuis 2003. Dans un premier temps, les travaux porteront sur le développement des capteurs à fibres optiques à base de fibres cristallines de rubis pour des environnements hostiles à savoir température élevée et déformations mécaniques très importantes. Il est à noter que ces capteurs sont insensibles aux dernières perturbations, et par conséquence, ne mesurent que la grandeur physique ciblée. Une deuxième partie concerne le développement initial d'un interféromètre fibré de Fabry-Pérot extrinsèque (EFFPI). Ce premier dispositif est basé sur la décomposition du mode fondamental injecté dans l'interféromètre en deux signaux intrinsèques interférométriques déphasés en quadrature, d'où l'EFFPI à double-cavité optiques. L'EFFPI à double-cavité se montre cependant sensible aux effets de polarisation lors des perturbations induites (variations de température et vibration parasites). Pour éliminer ces difficultés, un EFFPI à modulation est développé. Ce travail est effectué dans le cadre d'un projet ANR qui a pour objectif de développer des nouveaux instruments pour les applications en géophysique. En effet, une double modulation du courant de la diode laser est appliquée, ce qui équivaut une modulation sur la longueur d'onde du laser. Ainsi, nous obtenons une condition de quadrature où l'amplitude du déplacement ainsi que sa direction peuvent être précisément déterminées sans aucune ambiguïté. Par ailleurs, grâce a cette double modulation, l'EFFPI est aussi capable de mesurer des très faibles déplacements, inférieurs à lambda/4 (< 327.50 nm pour lambda = 1310 nm). Trois instruments opto-géophysiques ont ainsi été développés à savoir un inclinomètre longue base à fibre optique, un inclinomètre de forage à fibre optique et un sismomètre à fibre optique. La troisième partie taitera le développement des capteurs à fibres optiques à réseaux de Bragg pour la mesure de déformations mécaniques. Pour ce travail, une nouvelle technique d'interrogation des fibres à réseaux de Bragg basée sur la rétro-injection optique (ou "self-mixing") est exploitée pour réaliser des capteurs de contraintes (déformations mécaniques) avec une bonne précision.

Abstract

This HDR manuscript principally describes the research activities in which I have been involved since my appointment in August 2003 to my current laboratory, the Optoelectronics for Embedded Systems Group of the Laboratory for Analysis and Architecture Systems (LAAS-OSE). Before detailing these activities, I have also added a brief description of research work carried out during my PhD. This has been willingly added to this manuscript to demonstrate the evolution of my research activities over the past decade. Chapter 1 is a very brief introduction to my early career as a researcher in optics and fiber optics, basically describing work carried out on ruby crystal fiber-based sensors for harsh environments during my PhD at the University of Glasgow. Results show that c-axis ruby crystal fibers are uniquely sensitive to temperature effects while being insensitive to high levels of strains. Chapter 2 concerns an extrinsic-type fiber Fabry-Perot (EFFPI) interferometer which I initially developed during my post-doctoral fellowship at the Ecole des Mines de Nantes where I was responsible for setting up and leading the fiber optic sensing branch of the Instrumentation and Sensor Group. The proof-of-concept of the fiber interferometer was demonstrated before my departure to ENSEEIHT-INPT in Toulouse where I continue to work on its improvement at my current laboratory, LAAS-OSE, for metrology purposes. The initial polarization-based EFFPI which was developed earlier is thus described in the first half of Chapter 2 where a quadrature signal pair is obtained, hence the optical dual-cavity nature of the instrument. This is followed by its evolution into a modulation-based instrument, in the second half of the chapter, where, effectively, the introduction of a double-modulation scheme to the laser drive current enables a quadrature pair as well as the capability for detecting displacement amplitudes smaller than /4 to be achieved. This latter sensor has been conceived for applications in optical metrology and, more specifically, in geophysics under the ANR RISKNAT-sponsored LINES project. Three optical fiber-based geophysics instruments have been developed during the course of this project, namely, an EFFPI-based long baseline tiltmeter (or hydrostatic leveling system, HLS), an EFFPI-based borehole tiltmeter and an EFFPI-based seismometer. The modulation-based EFFPI is currently undergoing further development as a key component of the HLS for accelerator alignment at the CERN. A TRL 7 (technology readiness level) maturity state is envisaged at the outcome of this project. The final ambitions are to attain TRL 8 and TRL 9 before production and commercialization of the instrument for geophysics and industrial applications. Chapter 3 describes the second research activity which I lead at LAAS-OSE. This essentially involves the development of a novel technique for interrogating fiber Bragg grating-based (FBG) strain sensors based on optical feedback or self-mixing interferometry. The reflections off an FBG are retro-injected into the cavity of a laser diode, perturbing the internal fields. These result in a series of sawtooth fringes being detected by an internal photodiode and which are a function of the strength as well as frequency of the external strains applied on the FBG. This sensor has been demonstrated for dynamic strain measurements under a cantilever set-up. Further, a proof-of-concept is also experimentally demonstrated for extending the dynamic strain measurement range by 50% of the current limit via a low-frequency modulation scheme to the laser diode current. Chapter 4 is a summary of all the administrative tasks throughout my research career. It is organized around my supervision of PhD students including post-doctoral fellows, the various research projects that I have led and a selected list of my publications. Included is also a short discussion on the perspectives for leading further research as well as my services to my research community. I have also summarized my teaching duties and, to conclude this manuscript, my Curriculum Vitae is enclosed for perusal.

Mots-Clés / Keywords
Capteurs à fibres optiques; Géophysiques; Température; Déformations mécaniques; Interférométrie; Fiber optic sensors; Géophysics; Temperature; Mechanical strains; Interferometry;

133284
14437
18/03/2014

Développement d’algorithme temps réel pour capteur optique de vélocimétrie. Application à la mesure de vitesse de micro-canaux fluidiques

B.TANIOS

OSE

Doctorat : Université de Toulouse III - Paul Sabatier, 18 Mars 2014, 212p., Président: P.ARGUEL, Rapporteurs: P.PICART, M.LINTZ, Examinateurs: A.LE DUFF, Directeurs de thèse: T.BOSCH, F.BONY , N° 14437

Lien : http://tel.archives-ouvertes.fr/tel-01068342

Diffusable

Plus d'informations

Résumé

Les mesures de vitesse sans contact des cibles mobiles comme les structures mécaniques sont souvent utilisés dans diverses applications industrielles pour le contrôle non destructif et le contrôle qualité. En outre, les processus de mesure de vitesse peuvent devenir cruciaux si elle est l'un des paramètres qui régissent la sécurité et la performance d'un système comme dans le transport. La mesure précise et sans contact de vitesse de fluide circulant dans des micro-canaux est un enjeu majeur pour l’industrie chimique fabriquant des produits pharmaceutiques. En médecine, la connaissance de la vitesse du flux sanguin dans les vaisseaux peut permettre d’anticiper sur des maladies cardiovasculaires. De telles mesures sans contact peuvent être réalisées par ultrasons ou par micro-ondes mais ces deux méthodes ont une résolution spatiale relativement faible. D’autre part, les capteurs optiques usuels sont souvent de coût élevé. Par exemple, la vélocimétrie laser Doppler conventionnelle (ou LDV pour Laser Doppler Velocimetry) est une technique de haute précision pour des mesures de vitesse, mais l'utilisation d'un grand nombre de composants optiques implique un prix élevé. L’interférométrie à rétroinjection optique est une solution attrayante qui nous permet de concevoir des capteurs laser à faible coût présentant une bonne précision. Disposant de capteurs optiques sans contact utilisant juste une diode Laser soumise à la rétroinjection optique pour venir mesurer des vitesses, l’objectif de cette thèse est de développer des dispositifs adaptés à ce type de mesure et opérant en temps réel. En interférométrie à rétroinjection optique (ou OFI pour Optical Feedback Interferometry), couramment appelée self-mixing, une interférence se produit dans la cavité active du laser entre le champ existant dans la cavité et celui rétrodiffusé par une cible extérieure située en face de la diode laser induisant des variations de la puissance optique de sortie dues notamment à l'effet Doppler. Par mesure de la fréquence Doppler de la puissance optique, la vitesse de la cible peut être déterminée. Dans cette thèse, nous étudions les principales techniques de traitement du signal permettant d’offrir en temps réel des mesures de fréquence Doppler de précision acceptable. La première technique est basée sur une analyse spectrale classique et requiert le calcul d’une transformée de Fourier rapide (FFT). Cette technique est robuste mais nécessite un matériel électronique complexe et coûteux en ressources pour le traitement du signal en temps réel. La seconde est basée sur une modélisation autorégressive d’ordre 2 (AR2) du signal de self-mixing par un filtre de prédiction linéaire. La fréquence Doppler correspond à la fréquence de résonnance de ce filtre. Cette technique est plus précise, plus rapide et moins gourmande en ressources que la FFT. Par contre, elle présente un risque de divergence et nécessite un calibrage au démarrage. La troisième est une technique originale de traitement du signal temps-réel qui a permis d’améliorer les performances du capteur en termes de gamme de vitesses mesurables. Cette technique n’est pas gourmande en ressources comme la FFT et ne nécessite pas de calibrage comme l’AR2. Cette technique a été implémentée et validée expérimentalement en configurations réelles. Elle a permis de fournir des mesures de bonne précision, comparable à celle de la FFT. Nous appliquons ensuite ces méthodes de traitement du signal sur des signaux de self-mixing issus du passage de particules portées par un liquide dans le faisceau de la diode laser utilisée. En fait, dans ce cas, le signal de self-mixing ne présente plus un pic Doppler mais une distribution de fréquences Doppler car les particules traversant le faisceau sont de vitesses différentes allant de zéro au bord du canal jusqu’une valeur maximale au centre. Un autre phénomène qui peut contribuer à l’élargissement spectral est la diffusion multiple des particules. L’AR2 et la technique développée ont permis d’obtenir des mesures fiables de la vitesse d’écoulement fluidique dans un canal à l’échelle microscopique. D’autre part, nous étudions les configurations optiques du dispositif de mesure. Nous montrons que le dispositif employant une seule diode laser est sensible aux variations d’angle d’incidence avec la cible. Cet angle doit être connu pour calculer la vitesse. Nous proposons ensuite un dispositif employant deux diodes laser et nous montrons sa robustesse face aux variations d’angles d’incidence et sa capacité de calculer la vitesse de la cible sans connaitre les angles d’incidence. Nous analysons ce dispositif afin de déterminer la configuration optimale permettant de garantir les meilleures performances. Des simulations et des résultats expérimentaux permettent de valider les performances de ce dispositif en termes de précision et de robustesse. Enfin, nous appliquons ce dispositif à double-tête laser et la technique de traitement développée dans cette thèse pour mesurer la vitesse d’écoulement d’un liquide injecté dans un canal macroscopique par une pompe péristaltique à débit non continu. Cette thèse a donc permis de développer un capteur optique robuste à faible coût permettant de mesurer la vitesse en temps-réel en utilisant la rétroinjection optique.

Mots-Clés / Keywords
capteurs laser; interférométrie à rétroinjection optique; Microfluidique; Self-mixing; Traitement du signal; Vélocimétrie;

133256
13828
18/12/2013

Conception d'un système de verrouillage sur de fonctionnement pour les collisionneurs linéaires

P.NOUVEL

OSE

Doctorat : INP de Toulouse, 18 Décembre 2013, 157p., Président: J.ARLAT, Rapporteurs: L.TORRES, Y.HERVE, Directeurs de thèse: H.TAP-BETEILLE, B.PUCCIO , N° 13828

Lien : http://tel.archives-ouvertes.fr/tel-01068043

Diffusable

Plus d'informations

Abstract

For high energy accelerators, the interlock system is a key part of the machine protection. The interlock principle is to inhibit the beam either on failure of critical equipment and/or on low beam quality evaluation. The dependability of such a system is the most critical parameter. This thesis presents the design of an dependable interlock system for linear collider with an application to the CLIC (Compact Linear Collider) project. This design process is based on the IEEE 1220 standard and is is divided in four steps. First,the specifications are established, with a focus on the dependability, more precisely the reliability and the availability of the system. The second step is the design proposal based on a functional analysis, the CLIC and interfaced systems architecture. Third, the feasibility study is performed, applying the concepts in an accelerator facility. Finally, the last step is the hardware verification. Its aim is to prove that the proposed design is able to reach the requirements.

Résumé

Pour les accélérateurs de particules à hautes énergies, le système de verrouillage est une partie clé de la protection de la machine. Le verrouillage de la machine est l’inhibition du faisceau dès lors qu’un équipement critique tombe en panne et/ou qu’un faisceau est de faible qualité. Pour un système de verrouillage, sa sûreté de fonctionnement est la caractéristique la plus importante. Cette thèse présente le développement d’un système de verrouillage pour les collisionneurs linéaires avec une application au projet CLIC (Compact Linear Collider). Son élaboration s’appuie sur la norme d’ingénierie IEEE 1220 et se décline en quatre parties. Tout d’abord, les spécifications sont établies. Une attention particulière est portée sur la sûreté de fonctionnement, plus précisément, la fiabilité et la disponibilité du système. La deuxième étape est la proposition d’un design. Celui-ci est basé sur une analyse fonctionnelle, les interfaces du système et l’architecture du CLIC. Troisièmement, une étude de faisabilité est effectuée en appliquant les concepts dans un environnement opérationnel. Finalement, la dernière étape est la vérification matérielle. Le but est de prouver que le design proposé est capable de remplir le cahier des charges établi.

Mots-Clés / Keywords
Collisionneurs linéaires; Cern; Fiabilité; Protection machine; Critical systems; Linear collider; Reliability; Machine protection; Système critique;

133250
13827
10/07/2013

Détection homodyne appliquée à la mesure de la vitesse du vent

R.TEYSSEYRE

OSE

Doctorat : INP de Toulouse, 10 Juillet 2013, Directeur de thèse : T.BOSCH , N° 13827

Non diffusable

133248
13826
26/04/2013

Optical feedback interferometry sensing technique for flow measurements in microchannels

L.CAMPAGNOLO

OSE

Doctorat : INP de Toulouse, 26 Avril 2013, 196p., Rapporteurs: G.PLANTIER, S.ROYO, Examinateurs: A.OUAGAZZADEN, J.PERCHOUX, E.LACOT, Directeurs de thèse: T.BOSCH , N° 13826

Lien : http://tel.archives-ouvertes.fr/tel-01068169

Diffusable

Plus d'informations

Abstract

The phenomenon of optical feedback interferometry (OFI) or self-mixing effect in a laser is used to design non-invasive and self-aligned sensors, requiring only few optical elements and simple to implement. This type of sensor is used to measure the displacement, velocity or position of cooperative targets (reflective or strongly scattering targets). In this study, this phenomenom is applied to the measurement of fluid flow profile in microchannels. The low cost and versatility of optical feedback sensors are of great interest in biomedical and chemical industry as well as research in fluid mechanics. Based on studies in macro-channels, we proposed first a theoretical model of OFI in a laser diode when the target consists of moving particles suspended in a liquid. Based on this model, we then studied experimentally the impact of the sensor’s sensing volume and the type of particles (size and concentration) on the OFI signal. We then proposed signal processing methods for calculating the fluid flow rate, as well as the local velocity at any point in a microchannel. These preliminary studies allowed us to reconstruct the flow profile of different liquids flowing in a circular channel of 320μm diameter. Finally, we compared the performance of the sensor developed in this thesis with a sensor based on the Dual-Slit technique, which has been already validated for microchannels, by measuring the flow profile in a rectangular shaped channel (100x20µm).

Résumé

Le phénomène d’interférométrie par réinjection optique, ou effet self-mixing dans un laser permet de concevoir des capteurs non-invasifs, auto-alignés, ne nécessitant que peu d’éléments optiques et simples à implémenter. Ce type de capteur permet de mesurer avec la précision propre à l’interférométrie laser le déplacement, la vitesse ou la position de cibles dite coopératives (cibles réfléchissantes ou fortement diffusantes). Dans cette étude, ce type de capteurs est appliqué à la mesure de profil d’écoulement des fluides dans des microcanaux. Le faible coût et la polyvalence des capteurs à réinjection optique sont d’un grand intérêt dans l’industrie biomédicale et chimique, ainsi que pour la recherche en mécanique des fluides. Dans un premier temps, et en se basant sur les études réalisées dans des macro-canaux, nous avons proposé un modèle d’interferométrie par réinjection optique dans une diode laser lorsque la cible est constitué de particules en mouvement, en suspension dans un liquide. A partir de ce modèle, nous avons étudié expérimentalement l’impact du volume de mesure ainsi que du type de particules (taille et concentration) sur le signal mesuré. Nous avons ensuite proposé des méthodes de traitement du signal permettant de calculer le calcul du débit du fluide, ainsi que sous certaines conditions identifiées, la vitesse locale en tout point d’un microcanal. Ces études préliminaires nous ont permis de reconstruire le profil d’écoulement de différents liquides dans des canaux de 320µm de diamètre. Enfin, nous avons comparé les performances du capteur développé dans cette thèse avec un capteur basé sur la technique du Dual-Slit, technique déjà validée pour la microfluidique, en mesurant le profil d’écoulement dans un canal à section rectangulaire de 100x20µm.

Mots-Clés / Keywords
Self-mixing; Interferometry; Laser diodes; Flow measurement; Microfluidics; Diode laser; Interférométrie; Vélocimétrie; Microfluidique;

133240
Les informations recueillies font l’objet d’un traitement informatique destiné à des statistiques d'utilisation du formulaire de recherche dans la base de données des publications scientifiques. Les destinataires des données sont : le service de documentation du LAAS.Conformément à la loi « informatique et libertés » du 6 janvier 1978 modifiée en 2004, vous bénéficiez d’un droit d’accès et de rectification aux informations qui vous concernent, que vous pouvez exercer en vous adressant à
Pour recevoir une copie des documents, contacter doc@laas.fr en mentionnant le n° de rapport LAAS et votre adresse postale. Signalez tout problème de dysfonctionnement à sysadmin@laas.fr. http://www.laas.fr/pulman/pulman-isens/web/app.php/