Retour au site du LAAS-CNRS

Laboratoire d’analyse et d’architecture des systèmes
Choisir la langue : FR | EN

63documents trouvés

18078
26/01/2018

Modeling and control of a wing at low Reynolds number with high amplitude aeroelastic oscillations

F.NIEL

MAC

Doctorat : ISAE de Toulouse, 26 Janvier 2018, 176p., Président: I.QEUINNEC, Rapporteurs: M.LOVERA, M.JUNGER, Examinateurs: G.VALMORBIDA, C.POUSSOT-VASSAL, Directeurs de thèse: L.ZACCARIAN, A.SEURET , N° 18078

Lien : https://hal.laas.fr/tel-01763500

Diffusable

Plus d'informations

Résumé

A fort angles d'attaque ou à faible nombre de Reynolds, l'écoulement sur les ailes d'avion ou les pales d'hélicoptères ou d'éoliennes peut se séparer, ce qui peut éventuellement mener à des couplages aéroélastiques tels que le phénomène de flottement (flutter). Ces instabilités peuvent être particulièrement limitantes pour de nombreuses applications, voire destructrices. L'objectif de cette thèse est de s'intéresser à la modélisation et au contrôle d'une aile oscillant dans des conditions de flutter ainsi que de fournir une approche générale pour aborder ce problème. Tout d'abord, un modèle aéroélastique est développé en s'appuyant sur de précédents travaux. Le modèle est une extension de celui proposé par Goman-Khrabrov, et modifié par Williams, par l'utilisation du modèle ONERA BH. Si la première composante de ce modèle permet de rendre compte du phénomène d'hystérésis des charges aérodynamiques d'une aile en oscillation, la seconde permet d'inclure le détachement des tourbillons ainsi que le phénomène de décrochage dynamique qui peut être observé. Cette seconde composante est particuli èrement délicate à prédire alors qu'elle joue un rôle important dans la dynamique de l'aile. Le modèle aérodynamique est alors entraîné et comparé avec succès aux résultats expérimentaux obtenus pour une aile rigide de type NACA 0018 oscillant autour de son axe de tangage. Ce modèle, comme de nombreux modèles aéroélastiques ou aérodynamiques, souffre d'une complexité inhérente et de non-linéarités qui rendent son analyse et son contrôle particulièrement compliqués du point de vue de l'automatique. Pour cette raison, l'ensemble d'équations a été modiffié afin d'inclure les non-linéarités dans une formulation polytopique dont les paramètres sont incertains. Des stratégies dédiées aux systèmes à temps invariant sont alors étendues aux systèmes polytopiques. De plus, les saturations en vitesse ou en position qui sont un problème majeur et récurent de la dynamique du vol, sont considérées comme une contrainte supplémentaire dans la boucle d'asservissement. S'appuyant sur la théorie de la commande linéaire quadratique, plusieurs théorèmes sont alors développés en utilisant une formulation à partir des inégalités des matrices linéaires, afin de permettre non seulement de synthétiser un correcteur stabilisant mais aussi de définir une région d'attraction. Les théorèmes sont alors appliqués avec succès au cas du ottement de décrochage (stall utter), stabilisant le système en boucle fermée en présence de saturations en position et en vitesse, ce qui montre le potentiel des contributions développées dans ce travail de thèse.

Abstract

At high angles of attack or low Reynolds number, aircraft wings or blades of helicopters or even wind turbines may encounter separation of the ow which can eventually lead to aeroelastic couplings such as utter. These instabilities can be particularly destructive and are limiting for numerous applications. This thesis aims at considering the aeroelastic modeling and control of a pitching wing in utter conditions and at providing a general approach to tackle this problem. First, an aeroelastic model is developed based on previous works. This model provides an extension of the model proposed by Goman-Khrabrov, and modi ed by Williams, using the ONERA BH model. If the rst component of the model captures the hysteresis of the aerodynamic load of a pitching wing, the second one allows us to capture the vortex shedding and dynamic stall model which can be observed. This second component is particularly challenging to predict, while it plays an important role in the dynamics of the wing. The aerodynamic model is then trained and successfully compared to experimental data for a NACA 0018 rigid wing undergoing pitch oscillations at low Reynolds number. This model, like many aeroelastic or aerodynamic models, su ers from its inherent complexity and nonlinearities which make its analysis and control highly complicated with respect to the automatic control point of view. For this reason, the set of equations is conveniently manipulated to encapsulate the nonlinearities in a polytopic formulation with unknown parameters. Then, control strategies dedicated to linear time invariant systems are derived to account for this polytopic formulation. In addition, rate and magnitudes saturations are a major and recurrent issue in ight control and are also considered as an additional constraint in the control loop. Based on linear quadratic regulation theory, several theorems are developed using framework of linear matrix inequalities and allow not only to synthesize a stabilizing controller but also to de ne the region of attraction. The theorems are then applied to solve the problem of stall utter and successfully stabilize the closed-loop system in presence of rate and magnitude saturations, which demonstrate the potential of the contributions developed within this PhD approach.

Mots-Clés / Keywords
Flow control; Stability and control for non-linear systems; Aeroelasticity; Saturation; LQR control; LMI; Contrôle des écoulements; Stabilité et contrôle de systèmes non-linéaires; Aéroélasticité; Contrôle LQR;

143034
18006
25/01/2018

Stratégies de maintien à poste pour un satellite géostationnaire à propulsion tout électrique

C.GAZZINO

MAC

Doctorat : Université de Toulouse III - Paul Sabatier, Janvier 2018, 342p., Président: D.ALAZARD, Rapporteurs: H.ZIDANI, J.B.CAILLAU, Examinateurs: P.MARTINON, M.LOVERA, Directeurs de thèse: D.ARZELIER, C.LOUEMBET , N° 18006

Lien : https://hal.laas.fr/tel-01705222

Diffusable

Plus d'informations

Abstract

Geostationary spacecraft have to stay above a fixed point of the Earth, on a so-called geostationary Earth orbit. For this orbit, the orbital period of the spacecraft is equal to the rotation period of the Earth. Because of orbital disturbances, spacecraft drift away their station keeping position. It is therefore mandatory to create control strategies in order to make the spacecraft stay in the vicinity of the station keeping position. Due to their high thrust capabilities, chemical thrusters have been widely used. However nowadays electric propulsion based thrusters with their high specific impulse are viable alternative in order to decrease the spacecraft mass or increase its longevity. The use of such a system induce the necessity to handle operational constraints because of the limited on-board power. These operational constraints are difficult to take into account in the mathematical transcription of the station keeping problem in an optimal control problem with control and state constraints. This thesis proposed two techniques in order to solve this optimal control problem. The first one is based on the computation of first order necessary conditions and consists in decomposing the overall problem in three sub-problems, leading to a three-step decomposition method. The first step solves an optimal control problem without the operational constraints. The second steps enforces these operational constraints thanks to dedicated equivalence schemes and the third one optimises the switching times of the control profile thanks to a method borrowed from the switched systems theory. The second proposed method consists in parametrising the on-off control profile with binary functions. After a time discretisation of the station keeping horizons, the operational constraints are easily recast as linear constraints on integer variables, the dynamics is numerically integrated and the station keeping problem is recast as a mixed integer linear programming problem. After the resolution of the problem over a short time horizon of one week, the station keeping problem is solved over a long time horizon of one year. To this end, the long time horizon is split in shorter horizons over which the problem is successively solved. End-of-cycle constraints have been set up in order to ensure the feasibility of the solution one short horizon after another.

Résumé

Pour mener à bien leur mission, les satellites de télécommunications doivent rester à la verticale d’un même point de la Terre, sur une orbite dite géostationnaire, pour laquelle la période de révolution des satellites sur leur orbite est identique à la période de rotation de la Terre sur elle-même. Cependant, à cause des perturbations orbitales, les satellites tendent à s’en éloigner, et il est alors nécessaire de concevoir des stratégies de commande pour les maintenir dans un voisinage de cette position de référence. Du fait de leur grande valeur de poussée, les systèmes à propulsion chimique ont largement été utilisés, mais aujourd’hui les systèmes à propulsion électrique avec leur grande impulsion spécifique sont des alternatives viables pour réduire la masse d’ergols du satellite, et ainsi le coût au lancement, ou allonger la durée de vie du satellite, ce qui permettrait de limiter l’encombrement dans l’espace. Cependant, l’utilisation d’un tel système propulsif induit des contraintes opérationnelles issues en partie du caractère limité de la puissance électrique disponible à bord. Ces contraintes sont difficiles à prendre en compte dans la transcription du problème de maintien à poste en un problème de contrôle optimal à consommation minimale avec contraintes sur l’état et le contrôle. Ce manuscrit propose deux approches pour résoudre ce problème de commande optimale. La première, basée sur le développement et l’exploitation de conditions nécessaires d’optimalité, consiste à découper le problème initial en trois sous-problèmes pour former une méthode de résolution à trois étapes. La première étape permet de résoudre un problème de maintien à poste expurgé des contraintes opérationnelles, tandis que la deuxième, initialisée par le résultat de la première, produit une solution assurant le respect de ces dernières contraintes. La troisième étape permet d’optimiser la valeur des instants d’allumage et d’extinction des propulseurs dans le cadre du formalisme des systèmes à commutation. La seconde approche, dite « directe », consiste à paramétrer le profil de commande par une fonction binaire et à le discrétiser sur l’horizon temporel de résolution. Les contraintes opérationnelles sont ainsi facilement transcrites en contraintes linéaires en nombres entiers. Après l’intégration numérique de la dynamique, le problème de contrôle optimal se résume à un problème linéaire en nombres entiers. Après la résolution du problème de maintien à poste sur un horizon court d’une semaine, le problème est résolu sur un horizon long d’un an par résolutions successives sur des horizons courts d’une durée de l’ordre de la semaine. Des contraintes de fin d’horizon court doivent alors être ajoutées afin d’assurer la faisabilité de l’enchaînement des problèmes sur l’horizon court constituant le problème sur l’horizon long.

Mots-Clés / Keywords
Maintien à poste; Satellite GEO; Poussée faible; Contrôle optimal; Station keeping; GEO spacecraft; Low thrust; Optimal control;

142175
17473
19/12/2017

Contributions to the stability analysis and control of Networked Systems

A.SEURET

MAC

Habilitation à diriger des recherches : 19 Décembre 2017, 143p., Président: J.P.RAYMOND, Rapporteurs: J.M.CORON, C.SCHERER, S.HIRCHE, Examinateurs: J.DAAFOUZ, S.I.NICULESCU, C.PRIEUR, J.P.RICHARD, Encadrant: S.TARBOURIECH , N° 17473

Diffusable

141937
17624
28/09/2017

Some approximation schemes in polynomial optimization

R.HESS

MAC

Doctorat : Université de Toulouse III - Paul Sabatier, 28 Septembre 2017, 106p., Président: S.GAUBERT, Rapporteurs: K.KURDYKA, M.OVERTON, L.VANDENBERGHE, Examinateurs: J.BOLTE, E.DE KLERK, M.SCHWEIGHOFER, Directeurs de thèse: D.HENRION, J.B.LASSERRE , N° 17624

Lien : https://hal.laas.fr/tel-01809192

Diffusable

Plus d'informations

Résumé

Cette thèse est dédiée à l’étude de la hiérarchie moments-sommes-de-carrés, une famille de problèmes de programmation semi-définie en optimisation polynomiale, couramment appelée hiérarchie de Lasserre. Nous examinons différents aspects de ses propriétés et applications. Comme application de la hiérarchie, nous approchons certains objets potentiellement compliqués, comme l’abscisse polynomiale et les plans d’expérience optimaux sur des domaines semi-algébriques. L’application de la hiérarchie de Lasserre produit des approximations par des polynômes de degré fixé et donc de complexité bornée. En ce qui concerne la complexité de la hiérarchie elle-même, nous en construisons une modification pour laquelle un taux de convergence amélioré peut être prouvé. Un concept essentiel de la hiérarchie est l’utilisation des modules quadratiques et de leurs duaux pour appréhender de manière flexible le cône des polynômes positifs et le cône des moments. Nous poursuivons cette idée pour construire des approximations étroites d’ensembles semi-algébriques à l’aide de séparateurs polynomiaux.

Abstract

This thesis is dedicated to investigations of the moment-sums-of-squares hierarchy, a family of semidefinite programming problems in polynomial optimization, commonly called the Lasserre hierarchy. We examine different aspects of its properties and purposes. As applications of the hierarchy, we approximate some potentially complicated objects, namely the polynomial abscissa and optimal designs on semialgebraic domains. Applying the Lasserre hierarchy results in approximations by polynomials of fixed degree and hence bounded complexity. With regard to the complexity of the hierarchy itself, we construct a modification of it for which an improved convergence rate can be proved. An essential concept of the hierarchy is to use quadratic modules and their duals as a tractable characterization of the cone of positive polynomials and the moment cone, respectively. We exploit further this idea to construct tight approximations of semialgebraic sets with polynomial separators.

Mots-Clés / Keywords
Non-convex optimization; Non-smooth optimization; Polynomial approximations; Semialgebraic optimization; Semidefinite programming; Optimisation non-convexe; Optimisation non-lisse; Approximations polynomiales; Optimisation semi-algébrique; Optimisation semi-définie positive;

143598
17503
22/09/2017

Contrôle adaptatif robuste. Application au contrôle d’attitude de satellites

H.LEDUC

MAC

Doctorat : INSA de Toulouse, 22 Septembre 2017, 136p., Président: G.GARCIA, Rapporteurs: S.BENNANI, L.DUGARD, Examinateurs: A.FALCOZ, C.PITTET, Directeurs de thèse: D.PEAUCELLE , N° 17503

Lien : https://hal.laas.fr/tel-01705517

Diffusable

Plus d'informations

Abstract

This manuscript deals with robust direct adaptive control, and its application to CNES microsatellites attitude control. After listing the different types of time-varying controllers, we recall the characteristics of direct adaptive control. In particular, we recall that the knowledge of a stabilizing static output feedback is sufficient to design a direct adaptive controller. In parallel, we introduce the descriptor system theory. Modelizing a system into descriptor form is not usual but fits well with robust direct adaptive control. Starting from existing results about adaptive control and descriptor system theory, we provide an LMI based method which allows to compute, with the knowledge of a stabilizing static output feedback, the parameters of a stabilizing direct adaptive controller. A first result proves that the adaptive controller is at least as robust as the static output feedback. The second result allows to prove improved robustness at the expense of relaxing stability of the equilibrium point to practical stability, that is convergence to a neighborhood of the equilibrium. Then, we provide a method, LMI based as well, which allows to design a robust direct adaptive controller which has a better level of rejection of the perturbations than the static output feedback from which it is designed. All these theoretical results are applied to the attitude control of CNES microsatellites. We design a controller which stabilizes the attitude of the satellite whatever the value of its inertia. This attitude controller can also avoid the satellite reaction wheels to saturate. We design another robust adaptive attitude controller which has a better level of rejection of the perturbations than the static controller which is currently implemented aboard CNES satellites. Finally, we validate all the results of this manuscript by simulating on a AOCS CNES simulator the deployment of the satellite masts and some guiding jumps.

Résumé

Cette thèse porte sur la commande adaptative directe robuste et son application au contrôle d’attitude des satellites de la filière Myriade du CNES. Après avoir présenté les différents types de commande variant dans le temps, nous rappelons les caractéristiques d’un contrôleur adaptatif direct, en particulier le fait que la seule connaissance d’un retour de sortie stabilisant le système à contrôler suffit pour concevoir un contrôleur adaptatif direct. Parallèlement, nous présentons la théorie des systèmes descripteurs. Modéliser un système sous forme descripteur est non conventionnel mais présente de nombreux avantages dans le contexte de la commande adaptative directe robuste. A l’aide des résultats existants sur la commande adaptative directe d’une part, et de la théorie des systèmes descripteurs d’autre part, nous fournissons une méthode permettant de calculer, connaissant un retour de sortie constant, les paramètres d’un contrôleur adaptatif direct robuste stabilisant. Cette méthode repose sur la résolution d’inégalités matricielles linéaires. Le contrôleur adpatatif est plus robuste que le contrôleur constant, mais on ne peut prouver que la stabilité globale que vers un voisinage du point d’équilibre. Nous présentons ensuite une méthode, également basée sur la résolution d’inégalités matricielles linéaires, permettant de concevoir un contrôleur adaptatif direct robuste de meilleur niveau de rejet des perturbations extérieures que le contrôleur constant à partir duquel il est construit. L’ensemble de ces résultats théoriques est ensuite appliqué au contrôle d’attitude des satellites de la filière Myriade du CNES. En particulier, nous concevons un contrôleur d’attitude stabilisant le satellite quelle que soit la valeur de son inertie. Ce contrôleur d’attitude est également capable d’éviter aux roues à réaction du satellite de saturer. Nous concevons ensuite un contrôleur d’attitude adaptatif, robuste, et qui rejette mieux les perturbations extérieures que le contrôleur constant à partir duquel il est construit. Ce contrôleur constant est d’ailleurs actuellement implémenté à bord des satellites de la filière Myriade du CNES. Enfin, nous validons l’ensemble des résultats de cette thèse à l’aide d’un simulateur SCAO du CNES, où nous simulons le déploiement des mâts d’un satellite, ainsi que des scénarii de sauts de guidage.

Mots-Clés / Keywords
Commande adaptative directe; Inégalités matricielles linéaires; Robustesse aux incertitudes; Robustesse aux perturbations extérieures; Contrôle d’attitude de satellite; Systèmes descripteurs; Direct adaptive control; LMI; Robustness with respect to uncertainties; Robustness with respect to the perturbations; Satellite attitude control; Descriptor systems;

142273
17152
22/06/2017

Guidance and robust control methods for the approach phase between two orbital vehicles with coupling between translational and rotational motions

L.URBINA IGLESIAS

MAC

Doctorat : Université de Toulouse III - Paul Sabatier, 22 Juin 2017, 221p., Président: Y.LABIT, Rapporteurs: H.PIET-LAHANNIER, D.HENRY, Examinateurs: J.CRESPO MORENO, R.VAZQUEZ VALENZUELA, Y.ARIBA, Directeurs de thèse: D.ARZELIER, C.LOUEMBET, Membres invités: J.C.BERGES, D.LOSA , N° 17152

Lien : https://hal.laas.fr/tel-01591851

Diffusable

Plus d'informations

Résumé

Les techniques liées au vol en formation et aux opérations de proximité de satellites autonomes font partie des technologies opérationnelles spatiales les plus marquantes et les plus ambitieuses de ces dernières années. En particulier, cela nécessite la complète maitrise des phases de rendezvous proche et de survol par un satellite actif avec un satellite, une station ou un débris passif. Le développement de systèmes GNC (Guidage Navigation Contrôle) associés performants et sûrs repose sur la connaissance d’un modèle dynamique réalisant un bon compromis entre faible complexité et prise en compte suffisante des principales caractéristiques dynamiques et cinématiques de ce type de systèmes. La première partie de cette thèse est consacrée au développement d’une modélisation unifiée de la dynamique relative couplée entre un satellite coopératif chasseur et un satellite cible non coopérative. En effet, lorsque deux satellites sont proches l’un de l’autre, ils ne peuvent plus être traités comme des masses ponctuelles, car leur forme et leur taille affectent le mouvement relatif entre les points de masse décentralisés, conduisant à un couplage des mouvements de translation et de rotation. Ce développement est abordé de manière progressive: le mouvement de translation relatif non linéaire est décrit sous hypothèses képlériennes dans le repère orbital de la cible ainsi que le modèle linéarisé associé. Ensuite, le modèle non linéaire d’attitude relative est présenté au moyen des paramètres d’Euler-Rodrigues. Enfin, le formalisme des quaternions duaux est utilisé afin d’obtenir le modèle relatif couplé en translation et en attitude. La phase de modélisation du mouvement relatif linéaire de translation a ainsi permis de mettre en évidence certaines transformations de coordonnées conduisant à une caractérisation intéressante des trajectoires périodiques du chasseur et ainsi de proposer un premier type de loi de contrôle de guidage pour la phase d’approche et de survol. Dans l’ensemble de notre travail, nous considérons un chasseur équipé de propulseurs chimiques et l’hypothèse classique des poussées impulsionnelles. Ce type de systèmes dynamiques conciliant dynamique continue et contrôle impulsionnel se définit naturellement comme une classe particulière de systèmes dynamiques hybrides. Plusieurs lois de contrôle hybrides sont alors proposées afin de stabiliser le chasseur sur une trajectoire de référence périodique proche de la cible. Les propriétés de stabilité et de convergence de ces différentes lois sont analysées et de nombreuses simulations numériques montrent les forces et les faiblesses de chaque contrôleur en termes d’indices de performance commele temps de convergence, la consommation ainsi que des contraintes de sécurité. Dans un second temps, des contraintes opérationnelles supplémentaires (contraintes de visibilité par exemple) sont prises en considération en imposant une direction d’approche rectiligne (glideslope) au chasseur. Cette trajectoire impose au satellite chasseur de suivre une droite dans n’importe quelle direction du repère local reliant l’emplacement courant du chasseur à sa destination finale. Sous l’hypothèse de propulsion impulsionnelle, les résultats existant dans la littérature pour ce type d’approche ont été généralisés aux orbites elliptiques en identifiant une nouvelle formulation du problème comprenant des degrés de liberté utiles qui permettent de minimiser la consommation de carburant tout en contrôlant l’excursion de la trajectoire libre en dehors de la droite de glideslope en la confinant dans un couloir d’approche défini par l’utilisateur. La synthèse des lois de guidage ainsi obtenues repose sur la résolution de problèmes d’optimisation SDP dans le cas général ou linéaire pour les cas plus simples d’approche standards du type V-bar ou R-bar.

Abstract

The techniques related to formation flying and proximity operations of autonomous satellites belong to the most significant and challenging operational space technologies of the last years. In particular, they require full mastery of the close-range rendezvous and observation phases by an active satellite with a passive satellite, station or debris. The development of efcient and safe associated Guidance, Navigation and Control (GNC) systems relies on the knowledge of a dynamic model that achieves a good trade-off between low complexity and sufficient inclusion of the main dynamic and kinematic characteristics of this type of systems. The first part of this thesis is devoted to the development of a unified modeling of the relative coupled dynamics between a cooperative chaser satellite and a non-cooperative target satellite. Indeed, when two satellites are close to each other, they can no longer be treated as point masses because their shape and size affect the relative motion between the decentralized points, leading to a translational-attitude motions coupling. This development is addressed in a progressive way: the relative nonlinear translational motion is described under Keplerian assumptions in the target’s orbital reference frame, as well as the associated linearized model. Then, the nonlinear relative attitude model is presented by means of the Euler-Rodrigues parameters. Finally, the dual quaternion formalism is used to obtain the relative translational and attitude coupled model. The modeling phase concerning the linear relative translational motion has allowed us to highlight certain coordinates transformations leading to an interesting characterization of the chaser’s periodic trajectories and thus, to propose a first type of control lawfor the close-phase rendezvous and observation phases. All along this work, we consider a chaser satellite equipped with chemical thrusters under the classical hypothesis of impulsive thrusts. This type of dynamic systems gathering continuous dynamics and impulsive control naturally belongs to a particular class of dynamical hybrid systems. Several hybrid control laws are then proposed in order to stabilize the chaser on a periodic reference trajectory close to the target. The stability and convergence properties of these different laws are analysed and several numerical simulations show the strengths and weaknesses of each controller in terms of performance indices such as convergence time, consumption and safety constraints. In a second step, additional operational constraints (line-of-sight constraints for example) are taken into account by imposing a rectilinear (glideslope) direction to the chaser. This trajectory requires the chaser satellite to follow a straight line in any direction of the local reference frame and connecting the current location of the chaser to its final destination. Under the impulsive propulsion assumptions, the results in the literature for this type of approach have been generalized to elliptic orbits by identifying a newformulation of the problem including useful degrees of freedom, which allowminimizing the fuel consumption while controlling the humps of the trajectory outside the glideslope line by enclosing it in a user-defined approach corridor. Guidance laws are therefore synthetized via the solution of an SDP optimisation problem in the general case and via a linear programming when considering standard cases like the V-bar or R-bar approaches.

Mots-Clés / Keywords
Couplages; Glideslope; Guidage; Rendez-vous; Systèmes hybrides; Systèmes impulsionnels;

140155
16392
02/12/2016

Sur la modélisation et la commande de l’anesthésie en milieu clinique

S.ZABI

MAC

Doctorat : Université de Toulouse III - Paul Sabatier, 2 Décembre 2016, 183p., Président: P.DANES, Rapporteurs: M.JUNGERS, M.ALAMIR, Examinateurs: C.IONESCU, Directeurs de thèse: I.QUEINNEC , N° 16392

Lien : https://hal.laas.fr/tel-01417231

Diffusable

Plus d'informations

Abstract

This thesis deals with the modelling and control of anesthesia from a theoretical and formal angle. The general anesthesia of a patient during an operation consists for the anesthesiologist in checking the hypnotic and analgesic state of the patient (avoid over or under dosage) by adjusting the perfusion of analgesic and/or hypnotics substances based on clinical indicators such as BIS for hypnosis or pupillary surface variation for analgesia. This manuscript consists of three parts. The rst denes the concepts and key words used in the eld of anesthesia, presents an introduction to the modelling and control of anesthesia from the viewpoint of a control systems engineering, recalls the characteristics and constraints of control of the anesthesia systems and establishes a state of the art of works of the literature. The second part concerns the control of hypnosis which is performed in two phases : induction and maintenance. In the rst phase (induction), a minimal time control is calculated to bring the patient from his awakening state to the neighbourhood of a target equilibrium corresponding to an objective of the BIS. Once the patient state is close to the target state, the second phase (maintenance) consists in ensuring that the patient state remains in an invariant set where the BIS is guaranteed between 40 and 60 and possibly follows constant references . In this phase, the synthesis of the control laws (state feedback and dynamic output feedback) takes into account the saturation of the control, the positivity of the system, the variability of the patients, ... In the third part,we begin by proposing a novel indicator for the depth of analgesia and modelling the variation of the pupillary surface. Taking into account the quantication of the measures of this indicator, we propose the synthesis of a dynamic output feedback control. Then, a stability analysis is carried out taking into account the sampling of the measures.

Résumé

138217
16509
25/10/2016

On distributed control analysis and design for multi-agent systems subject to limited information

L.DAL COL

MAC

Doctorat : INSA de Toulouse, 25 Octobre 2016, 149p., Président: M.KIEFFER, Rapporteurs: M.D.DI BENEDETTO, M.C.TURNER, Examinateurs: D.DIMAROGONAS, P.FRASCA, Directeurs de thèse: S.TARBOURIECH, L.ZACCARIAN , N° 16509

Lien : https://hal.laas.fr/tel-01483757

Diffusable

Plus d'informations

Résumé

Les systèmes multi-agents sont des systèmes dynamiques composes par plusieurs éléments qui interagissent entre eux. Ces éléments sont appelés agents. Un agent est un système dynamique caractérisé par deux propriétés. La première est que les agents sont autonomes— c’est-a-dire qu’ils ne sont pas dirigés par l’environnement extérieur et ils peuvent évoluer selon un comportement auto-organisé. La seconde est que les agents sont capables de communiquer entre eux pour accomplir des tâches complexes, telles que la coopération, la coordination et la résolution de conflits. L’un des problèmes courants concernant les systèmes multi-agents est la synchronisation. Les agents sont synchronisés lorsque leur évolution dans le temps converge vers une trajectoire commune. Plusieurs applications du monde réel peuvent être conceptualisé comme des problèmes de synchronisation des systèmes multi-agents : par exemple, l’alignement en vitesse (flocking en anglais), et le contrôle de la formation du mouvement de groupes cohérents. La synchronisation des systèmes multi-agents peut être obtenue grâce à différentes techniques de contrôle. Dans cette thèse nous proposons des méthodes de contrôle centralisées et distribuées pour la synchronisation des systèmes multi-agents. Nous développons des conditions nécessaires et suffisantes pour la synchronisation des systèmes multi-agents, composes par des agents identiques et linéaires qui ne changent pas dans le temps, en utilisant une approche Lyapunov. Ces conditions sont utilisées pour la conception de lois de contrôles distribuées. Ensuite, nous étendons les résultats aux systèmes multi-agents soumis `a des perturbations externes, assurant un niveau de performance désiré grâce a une technique de contrôle de type 𝐻∞. Enfin, nous étendons l’analyse aux systèmes multi-agents avec contraintes sur les actionneurs, en utilisant des techniques de contrôle anti-windup. Nous évaluons l’efficacité et les performances des stratégies de contrôle proposées dans plusieurs simulations, dont deux d’entre elles sont inspirées par des applications issues du monde réel. La première est le contrôle du vol en formation d’avions, et la seconde est l’analyse de la transmission de contenus vidéo comme un problème de synchronisation. Nous comparons aussi les résultats obtenus avec des techniques de contrôle alternatives.

Abstract

Multi-agent systems are dynamical systems composed of multiple interacting elements known as agents. Each agent is a dynamical system with two characteristics. First, it is capable of autonomous action—that is, it is able to evolve according to a self-organised behavior, which is not influenced by the external environment. Second, it is able to exchange information with other agents in order to accomplish complex tasks, such as coordination, cooperation, and conflict resolution. One commonly studied problem in multi-agent systems is synchronization. The agents are synchronized when their time evolutions converge to a common trajectory. Many real-world applications, such as flocking and formation control, can be cast as synchronization problems. Agent synchronization can be achieved using different approaches. In this thesis, we propose distributed and centralized control paradigms for the synchronization of multi-agent systems. We develop necessary and sufficient conditions for the synchronization of multi-agent systems, composed by identical linear time-invariant agents, using a Lyapunov-based approach. Then we use these conditions to design distributed synchronization controllers. Then, we extend this result to multi-agent systems subject to external disturbances enforcing disturbance rejection with 𝐻∞ control techniques. Furthermore, we extend the analysis to multi-agent systems with actuator constraints using LMI-based anti-windup techniques. We test the proposed control design strategies in simulated examples among which two are inspired by real-world applications. In the first, we study airplane formation control as a synchronization problem. In the second, we analyze the delivery of video streams as a synchronization problem and we compare the results to existing controllers.

Mots-Clés / Keywords
Consensus and synchronization; Distributed control; Lyapunov approach; Multi-agent systems; Nonlinear systems;

138913
16009
15/01/2016

Synthèse de commande pour des réseaux de communication énergétiquement performants

W.ZOUAOUI

SARA, MAC

Doctorat : Université de Toulouse III - Paul Sabatier, 15 Janvier 2016, 122p., Président: T.GAYRAUD, Rapporteurs: D.SIMON, A.MELLOUK, Examinateurs: L.GALLON, Directeurs de thèse: C.ALBEA SANCHEZ, Y.LABIT , N° 16009

Lien : https://tel.archives-ouvertes.fr/tel-01280075

Diffusable

Plus d'informations

Abstract

The computer tools (as the routers and calculators among others) present a high energy consumption. This problem has been already included in mobile networks. The question of energy is just beginning to be considered for "fixed" large-scale systems that reach nowadays high sizes. The objective of this thesis is to address the problem of energy consumption in wired communication networks : provide a certain level of quality of service (QoS) with respect to the packet lost, response speed and robustness with respect to different sampling periods while controlling power consumption of the system. The goal is to design a method from the theory of control, which guarantees these QoS. This technique is applied locally to a network equipment (router, switch . . . ) and the control law used to distribute temporally the traffic through a controlled node in the wired communications networks. In this work, we considere that the communication between nodes are performed by routers ALR type. In order to deal with energy reduction problem, we propose an extended ALR energy model adapted to control theory. For this model, we need to choose two parameters ( , ) allowing to choose the queue length reference, qref , and the related update timewindow, Tqref . These parameters have been chosen after performing some simulations with different combinations of parameters ( , ). We have seen that the variation of these two parameters provide an impact over the QoS as well as the energy reduction. The theoretical results are then tested in Matlab-Simulink as well as some experiments under the simulator NS-2. Simulations showed that the energy consumption in communications networks is reduced while ensuring a certain level of QoS.

Résumé

Les outils informatiques (comme les routeurs et calculateurs entre autres) sont des consommateurs accrus d’énergie. Cette problématique a été déjà prise en compte dans les réseaux mobiles. La question de l’énergie commence juste à être prise en compte pour les systèmes «fixes» à grande échelle qui atteignent de nos jours des tailles impressionnantes. L’objectif de cette thèse est de traiter le problème de la consommation de l’énergie dans les réseaux de communication filaires : fournir un certain niveau de qualité de service (QdS) par rapport à la perte des paquets, la vitesse de réponse et la robustesse par rapport aux différentes périodes d’échantillonnages tout en contrôlant la puissance consommée du système. Le but est de concevoir une méthode à partir de la théorie de la commande, qui consiste à garantir un certain nombre de paramètres de QdS. Cette technique est appliquée au niveau local d’un équipement réseau (routeur, switch . . . ). La loi de commande permet de distribuer temporellement le trafic qui traverse un noeud contrôlé dans les réseaux de communication filaires. Dans ce travail, nous avons considéré que les noeuds de communications sont des routeurs de type ALR. Pour traiter le problème de la consommation énergétique dans les réseaux de communication filaires, nous avons proposé un modèle énergétique ALR étendu adapté à la théorie de commande. Pour ce modèle, nous avons besoin de choisir deux paramètres ( , ), permettant de choisir la taille de file d’attente de référence qref et sa fenêtre temporelle d’actualisation Tqref .Ce deux paramètres ont été choisis à partir de plusieurs simulations avec différentes combinaisons des paramètres ( , ). Nous avons vu que la variation de ces deux paramètres permet d’agir énormément sur la QdS ainsi que sur la quantité d’énergie réduite. Les résultats théoriques sont ensuite testés sur Matlab-Simulink, puis sur le simulateur de réseaux NS-2. Les simulations ont montré que la consommation énergétique dans les réseaux de communication est bien réduite tout en garantissant un certain niveau de QdS.

Mots-Clés / Keywords
Réseaux de communication; Contrôleur de flux éco-conscient; Modèle d’énergie; QdS; ADREAM; Théorie de commande; Communication networks; Eco-conscious flow controller; Power model; Control theory;

136097
15580
10/12/2015

Opérations de proximité en orbite : évaluation du risque de collision et calcul de manoeuvres optimales pour l’évitement et le rendez-vous

R.SERRA

MAC

Doctorat : INSA de Toulouse, Décembre 2015, 195p., Président: H.ZIDANI, Rapporteurs: J.F.BONNANS, R.HENRION, Examinateurs: A.BOUTONNET, M.JOLDES, B.SALVY, Directeurs de thèse: D.ARZELIER, A.RONDEPIERRE , N° 15580

Lien : https://tel.archives-ouvertes.fr/tel-01261497

Diffusable

Plus d'informations

Résumé

Cette thèse traite de l'évitement de collision entre un engin spatial opérationnel, appelé objet primaire, et un débris orbital, dit secondaire. Ces travaux concernent aussi bien la question de l'estimation du risque pour une paire d'objets sphériques que celle du calcul d'un plan de manoeuvres d'évitement pour le primaire. Pour ce qui est du premier point, sous certaines hypothèses, la probabilité de collision s'exprime comme l'intégrale d'une fonction gaussienne sur une boule euclidienne, en dimension deux ou trois. On en propose ici une nouvelle méthode de calcul, basée sur les théories de la transformée de Laplace et des fonctions holonomes. En ce qui concerne le calcul de manoeuvres de propulsion, dfférentes méthodes sont développées en fonction du modèle considéré. En toute généralité, le problème peut être formulé dans le cadre de l'optimisation sous contrainte probabiliste et s'avère dfficile à résoudre. Dans le cas d'un mouvement considéré comme relatif rectiligne, l'approche par scénarios se prête bien au problème et permet d'obtenir des solutions admissibles. Concernant les rapprochements lents, une linéarisation de la dynamique des objets et un recouvrement polyédral de l'objet combiné sont à la base de la construction d'un problème de substitution. Deux approches sont proposées pour sa résolution : une première directe et une seconde par sélection du risque. Enfin, la question du calcul de manoeuvres de proximité en consommation optimale et temps fixé, sans contrainte d'évitement, est abordée. Par l'intermédiaire de la théorie du vecteur efficacité, la solution analytique est obtenue pour la partie hors-plan de la dynamique képlérienne linéarisée.

Abstract

This thesis is about collision avoidance for a pair of spherical orbiting objects. The primary object - the operational satellite - is active in the sense that it can use its thrusters to change its trajectory, while the secondary object is a space debris that cannot be controlled in any way. Onground radars or other means allow to foresee a conjunction involving an operational spacecraft, leading in the production of a collision alert. The latter contains statistical data on the position and velocity of the two objects, enabling for the construction of a probabilistic collision model. The work is divided in two parts : the computation of collision probabilities and the design of maneuvers to lower the collision risk. In the first part, two kinds of probabilities - that can be written as integrals of a Gaussian distribution over an Euclidean ball in 2 and 3 dimensions - are expanded in convergent power series with positive terms. It is done using the theories of Laplace transform and D-finite functions. In the second part, the question of collision avoidance is formulated as a chance-constrained optimization problem. Depending on the collision model, namely short or long-term encounters, it is respectively tackled via the scenario approach or relaxed using polyhedral collision sets. For the latter, two methods are proposed. The first one directly tackles the joint chance constraints while the second uses another relaxation called risk selection to obtain a mixed-integer program. Additionaly, the solution to the problem of fixed-time fuelminimizing out-of-plane proximity maneuvers is derived. This optimal control problem is solved via the primer vector theory.

Mots-Clés / Keywords
Optimisation; Contrainte probabiliste; Approche scénarios; Evitement de collision; Probabilité de collision; Développement en série; Fonctions holonomes; Collision en orbite; Débris spatiaux; Rendez-vous; Commande optimale; Vecteur effcacité; Optimization; Chance constraint; Scenario approach; Collision avoidance; Collision probability; Series expansion; D-finite functions; Orbital collision; Space debris; Rendezvous; Optimal control; Primer vector;

135926
Les informations recueillies font l’objet d’un traitement informatique destiné à des statistiques d'utilisation du formulaire de recherche dans la base de données des publications scientifiques. Les destinataires des données sont : le service de documentation du LAAS.Conformément à la loi « informatique et libertés » du 6 janvier 1978 modifiée en 2004, vous bénéficiez d’un droit d’accès et de rectification aux informations qui vous concernent, que vous pouvez exercer en vous adressant à
Pour recevoir une copie des documents, contacter doc@laas.fr en mentionnant le n° de rapport LAAS et votre adresse postale. Signalez tout problème de dysfonctionnement à sysadmin@laas.fr. http://www.laas.fr/pulman/pulman-isens/web/app.php/