Retour au site du LAAS-CNRS

Laboratoire d’analyse et d’architecture des systèmes
Choisir la langue : FR | EN

38documents trouvés

17519
13/12/2017

Handling uncertainty and variability in robot control

N.GIFTSUN

GEPETTO

Doctorat : INSA de Toulouse, 13 Décembre 2017, 115p., Président: P.PLOEGER, Rapporteurs: V.PADOIS, Examinateurs: A.DEL PRETE, Directeurs de thèse: F.LAMIRAUX , N° 17519

Lien : https://hal.laas.fr/tel-01713007

Diffusable

Plus d'informations

Abstract

Amidst a lot of research in motion planning and control in concern with robotic applications, the mankind has never reached a point yet, where the robots are perfectly functional and autonomous in dynamic settings. Though it is controversial to discuss about the necessity of such robots, it is very important to address the issues that stop us from achieving such a level of autonomy. Industrial robots have evolved to be very reliable and highly productive with more than 1.5 million operational robots in a variety of industries. These robots work in static settings and they literally do what they are programmed for specific usecases, though the robots are flexible enough to be programmed for a variety of tasks. This research work makes an attempt to address these issues that separate both these settings in a profound way with special focus on uncertainties. Practical impossibilities of precise sensing abilities lead to a variety of uncertainties in scenarios where the robot is mobile or the environment is dynamic. This work focuses on developing smart strategies to improve the ability to handle uncertainties robustly in humanoid and industrial robots. First, we focus on a dynamical obstacle avoidance framework proposed for industrial robots equipped with skin sensors for reactivity. Path planning and motion control are usually formalized as separate problems in robotics. High dimensional configuration spaces, changing environment and uncertainties do not allow to plan real-time motion ahead of time requiring a controller to execute the planned trajectory. The fundamental inability to unify both these problems has led to handle the planned trajectory amidst perturbations and unforeseen obstacles using various trajectory execution and deformation mechanisms. The proposed framework uses ’Stack of Tasks’, a hierarchical controller using proximity information to avoid obstacles. Experiments are performed on a UR5 robot to check the validity of the framework and its potential use for collaborative robot applications. Second, we focus on a strategy to model inertial parameters uncertainties in a balance controller for legged robots. Model-based control has become more and more popular in the legged robots community in the last ten years. The key idea is to exploit a model of the system to compute precise motor commands that result in the desired motion. This allows to improve the quality of the motion tracking, while using lower feedback gains, leading so to higher compliance. However, the main flaw of this approach is typically its lack of robustness to modeling errors. In this paper we focus on the robustness of inverse-dynamics control to errors in the inertial parameters of the robot. We assume these parameters to be known, but only with a certain accuracy. We then propose a computationally-efficient optimization-based controller that ensures the balance of the robot despite these uncertainties. We used the proposed controller in simulation to perform different reaching tasks with the HRP-2 humanoid robot, in the presence of various modeling errors. Comparisons against a standard inverse-dynamics controller through hundreds of simulations show the superiority of the proposed controller in ensuring the robot balance.

142375
17608
12/12/2017

Planification interactive de mouvement avec contact

N.BLIN

GEPETTO

Doctorat : INP de Toulouse, Décembre 2017, 134p., Président: R.ZAPATA, Rapporteurs: V.PERDEREAU, B.FOUAD, Examinateurs: , Directeurs de thèse: J.Y.FOURQUET, M.TAIX, P.FILLATREAU , N° 17608

Diffusable

Plus d'informations

Abstract

Designing new industrial products requires to develop prototypes prior to their launch phase. An interesting solution to speedup the development phase and reduce its costs is to use virtual prototypes as long as possible. Some steps of the development consist in assembly or disassembly operations. These operations can be done manually or automatically using a motion planning algorithm. Motion planning is a method allowing a computer to simulate the motion of an object from a start point to a goal point while avoiding obstacles. The following research work brings solutions for the interaction between a human operator and a motion planning algorithm of virtual objects for the exploration of free space. Research time is split between the human and the machine according to an authority sharing parameter determining the percentage of time allocated to one or the other entity. The simultaneous use of a human and a machine greatly speedup the exploration in comparison to the time needed by any of the former two alone. This work then presents a new interactive motion planner with contact. This method permits to generate trajectories at the surface of obstacles instead of free space trajectories. Contact motion planning allows specific operations such as sliding or insertion. This greatly diminishes the solving time of motion planning problems in cluttered environments. Detecting the intentions of a user when he interacts with a machine is a good way to convey orders efficiently and intuitively. An algorithm for interactive contact planning with intention detection techniques is proposed. This algorithm uses a haptic robot allowing a user to feel virtual obstacles when manipulating a virtual object in a virtual reality environment. The interactive algorithm adapts to the actions of the user in real time for a pertinent exploration of the surfaces of obstacles. This work has been done partly in LAAS-CNRS laboratory in Toulouse in Gepetto team and partly in LGP-ENIT laboratory in Tarbes in DIDS team. We wish to thank the Midi-Pyrénées region for funding this research.

Résumé

La conception de nouveaux produits industriels nécessite le développement de prototypes avant leur déploiement grand public. Afin d’accélérer cette phase et de réduire les coûts qui en découlent, une solution intéressante consiste a utiliser des prototypes virtuels le plus longtemps possible en particulier dans la phase de conception. Certaines des étapes de la conception consistent à effectuer des opérations d’assemblage ou de désassemblage. Ces opérations peuvent être effectuées manuellement ou automatiquement à l’aide d’un algorithme de planification de mouvement. La planification de mouvement est une méthode permettant à un ordinateur de simuler le déplacement d’un objet d’un point de départ à un point d’arrivée tout en évitant les obstacles. Le travail de recherche de cette thèse apporte des solutions afin d’améliorer l’interaction entre un humain et un algorithme de planification de mouvement pendant l’exploration de l’espace libre. Le temps de recherche est partagé entre l’humain et la machine selon un paramètre de partage d’autorité permettant de déterminer le pourcentage d’allocation du temps à l’une ou l’autre entité. L’utilisation simultanée de ces deux entités permet d’accélérer grandement la vitesse d’exploration par rapport à la vitesse d’un humain seul ou d’un algorithme seul. Ces travaux apportent ensuite une nouvelle méthode de planification de mouvement avec contact permettant de générer des trajectoires à la surface des obstacles au lieu de les générer uniquement dans l’espace libre. La planification au contact permet d’effectuer des opérations spécifiques telles que le glissement ou l’insertion utiles pour la résolution de problèmes de planification dans des environnements encombrés. Enfin, détecter les intentions d’un utilisateur lorsqu’il interagit avec une machine permet de lui fournir des ordres efficacement et intuitivement. Dans le cadre de la planification interactive au contact, un algorithme de détection d’intention est proposé. Ce dernier s’appuie sur l’utilisation d’un robot haptique permettant à un opérateur de ressentir les obstacles virtuels lors de la manipulation d’un objet virtuel dans un environnement de réalité virtuelle. L’algorithme interactif s’adapte en temps réel aux actions de l’opérateur pour une exploration pertinente de la surface des obstacles. Ces travaux ont été menés en partie au laboratoire toulousain LAAS au sein de l’équipe Gepetto et en partie dans le laboratoire LGP de l’ENIT au sein de l’équipe DIDS. Nous remercions la région Midi-Pyrénées pour avoir financé ces recherches.

Mots-Clés / Keywords
Planification au contact; Planification de mouvement; Robotique; Informatique; Réalité virtuelle; Retour haptique; Détection d'intention; Computer science; Robotics; Motion planning; Virtual reality; Haptic feedback; Intention detection;

143213
17406
17/10/2017

Estimation et stabilisation de l'état d'un robot humanoïde compliant

A.MIFSUD

GEPETTO

Doctorat : INP de Toulouse, 17 Octobre 2017, 113p., Président: C.CHEVALLEREAU, Rapporteurs: T.HAMEL, Examinateurs: J.SOLA, P.B.WIEBER, Directeurs de thèse: F.LAMIRAUX, M.BENALLEGUE , N° 17406

Lien : https://hal.laas.fr/tel-01653163

Diffusable

Plus d'informations

Résumé

Cette thèse traite de l’estimation et de la stabilisation de l’état des compliances passives présentes dans les chevilles du robot humanoïde HRP-2. Ces compliances peuvent être vues comme un degré de liberté unique et observable, sous quelques hypothèses qui sont explicitées. L’estimateur utilise des mesures provenant de la centrale inertielle située dans le torse du robot et éventuellement des capteurs de forces situés dans ses pieds. Un filtre de Kalman étendu est utilisé pour l’estimation d’état. Ce filtre utilise un modèle complet de la dynamique du robot, pour lequel la dynamique interne du robot, considérée comme parfaitement connue et contrôlée, a été découplée de la dynamique de la compliance passive du robot. L’observabilité locale de l’état a été montrée en considérant ce modèle et les mesures provenant de la centrale inertielle seule. Il a de plus été montré que l’ajout des mesures des capteurs de forces dans les pieds du robot permet de compléter l’état avec des mesures d’erreurs dans le modèle dynamique du robot. L’estimateur a été validé expérimentalement sur le robot humanoïde HRP-2. Sur cet estimateur a été construit un stabilisateur de l’état de la compliance d’HRP-2. L’état commandé est la position et vitesse du centre de masse (contrôle indirecte de la quantité de mouvement) du robot, l’orientation et la vitesse angulaire de son tronc (contrôle indirecte du moment cinétique), ainsi que l’orientation et la vitesse angulaire de la compliance. Les grandeurs de commande sont l’accélération du centre de masse du robot et l’accélération angulaire de son tronc. Un régulateur quadratique linéaire (LQR) a été utilisé pour calculer les gains du retour d’état, basé sur un modèle appelé "pendule inverse flexible à roue d’inertie" qui consiste en un pendule inverse dont la base est flexible et où une répartition de masse en rotation autour du centre de masse du robot représente le tronc du robot. Des tests ont été effectués sur le robot HRP-2 en double support, utilisant l’estimateur décrit précédemment avec ou sans les capteurs de forces.

Mots-Clés / Keywords
Estimation; Asservissement; Robotique humanoïde;

141453
17149
07/07/2017

Motion planning for digital actors

M.CAMPANA

GEPETTO

Doctorat : Université de Toulouse III - Paul Sabatier, 17 Juillet 2017, 115p., Président:, Rapporteurs: L.REVERET, K.YAMANE, Examinateurs: M.VENDITELLI, J.CORTES, Directeurs de thèse: J.P.LAUMOND , N° 17149

Lien : https://hal.laas.fr/tel-01591472

Diffusable

Plus d'informations

Résumé

Les algorithmes probabilistes offrent de puissantes possibilités quant à la résolution de problèmes de planification de mouvements pour des robots complexes dans des environnements quelconques. Cependant, la qualité des chemins solutions obtenus est discutable. Cette thèse propose un outil pour optimiser ces chemins et en améliorer la qualité. La méthode se base sur l’optimisation numérique contrainte et la détection de collision pour réduire la longueur du chemin tout en évitant les collisions. La modularité des méthodes probabilistes nous a aussi inspirés pour réaliser un algorithme de génération de sauts pour des personnages. Cet algorithme est décrit par trois étapes de planifications, de la trajectoire du centre du personnage jusqu’à son mouvement corps-complet. Chaque étape bénéficie de la rigueur de la planification pour éviter les collisions et pour contraindre le chemin. Nous avons proposé des contraintes inspirées de la physique pour améliorer la plausibilité des mouvements, telles que du non-glissement, de la limitation de vitesse et du maintien de contacts. Les travaux de cette thèse ont été intégrés dans le logiciel “Humanoid Path Planner” et les rendus visuels effectués avec Blender.

Abstract

Probabilistic algorithms offer powerful possibilities as for solving motion planning problems for complex robots in arbitrary environments. However, the quality of obtained solution paths is questionable. This thesis presents a tool to optimize these paths and improve their quality. The method is based on constrained numerical optimization and on collision checking to reduce the path length while avoiding collisions. The modularity of probabilistic methods also inspired us to design a motion generation algorithm for jumping characters. This algorithm is described by three steps of motion planning, from the trajectory of the character’s center to the wholebody motion. Each step benefits from the rigor of motion planning to avoid collisions and to constraint the path. We proposed physics-inspired constraints to increase the plausibility of motions, such as slipping avoidance, velocity limitation and contact maintaining. The thesis works have been implemented in the software ‘Humanoid Path Planner’ and the graphical renderings have been done with Blender.

Mots-Clés / Keywords
Motion planning; Computer animation; Ballistic motion; Path optimization; Simulation; Planification de mouvement; Animation graphique; Mouvement ballistique; Optimisation de chemin;

140133
17079
21/02/2017

Manipulation planning for documented objects

J.MIRABEL

GEPETTO

Doctorat : INP de Toulouse, 21 Février 2017, 131p., Président: J.P.LAUMOND, Rapporteurs: E.MAZER, F.VAN DER STAPPEN, Examinateurs: M.MICHELIN, Directeurs de thèse: F.LAMIRAUX , N° 17079

Lien : https://hal.laas.fr/tel-01516897

Diffusable

Plus d'informations

Résumé

Cette thèse traite du problème de planification de mouvement pour objets documentés. La difficulté du problème réside dans le couplage d’un problème symbolique et d’un problème géométrique. Les approches habituelles combinent la planification de tâche et la planification de mouvement. Elles sont complexes à implémenter et coûteuse en temps de calcul. Notre approche se différencie sur trois aspects. Le premier aspect est un cadre théorique modélisant les mouvements admissibles du robot et des objets. Ce modèle théorique utilise des contraintes pour lier tâche symbolique et chemins géométriques accomplissant cette tâche. Un graphe de contrainte permet de modéliser les règles de manipulation. Un algorithme de planification utilisant ce graphe est proposé. Le deuxième aspect est la gestion de chemin contraint. Dans le cadre de la manipulation, un définition abstraite sous forme de contrainte numérique est nécessaire. Un critère de continuité pour les méthodes de type Newton-Raphson est proposé pour assurer la continuité de trajectoire dans des sous-variétés. Le dernier aspect est la documentation des objets. Certaines informations, facile à définir pour l’être humain, accélère grandement la recherche d’une solution. Cette documentation, spécifique à chaque objet et préhenseur, est utilisée pour générer un graphe de contrainte, facilitant ainsi la spécification et la résolution du problème.

Abstract

This thesis tackles the manipulation planning for documented objects. The difficulty of the problem is the coupling of a symbolic and a geometrical problem. Classical approaches combine task and motion planning. They are hard to implement and time consuming. This approach is different on three aspects. The first aspect is a theoretical framework to model admissible motions of the robot and objects. This model uses constraints to link symbolic task and motions achieving such task. A graph of constraint models the manipulation rules. A planning algorithm using this graph is proposed. The second aspect is the handling of constrained motion. In manipulation planning, an abstract definition of numerical constraint is necessary. A continuity criterion for Newton-Raphson methods is proposed to ensure the continuity of trajectories in sub-manifolds. The last aspect is object documentation. Some information, easy to define for human beings, greatly speeds up the search. This documentation, specific to each object and end-effector, is used to generate a graph of constraint, easing the problem specification and resolution.

Mots-Clés / Keywords
Manipulation planning; Constrained planning; Continuous trajectory generation; Affordance; Documented objects; Planification de manipulation; Planification sous contraintes; Génération de trajectoire continue; Objets documentés;

139493
16479
22/12/2016

Design, modeling and control of inherently compliant actuators with a special consideration on agonist-antagonist anthropomorphic configuration

G.HARI SHANKAR LAL DAS

GEPETTO

Doctorat : INSA de Toulouse, 22 Décembre 2016, 140p., Président: P.FRAISSE, Rapporteurs: Y.AOUSTIN, B.VANDERBORGHT, Examinateurs: , Directeurs de thèse: B.TONDU, P.SOUERES, membre invité: O.STASSE , N° 16479

Lien : https://hal.laas.fr/tel-01482297

Diffusable

Plus d'informations

Abstract

Design, modeling and control of inherently compliant actuators with a special consideration on agonist- antagonist anthropomorphic configuration" The research aims at the design, modeling and control of inherently compliant actuators for anthropomorphic systems. The first part of the work focuses on the study of various existing designs and look for the possibility of alternative actuators other than the conventional electric motors. Special attention is given to elctroactive polymer based soft actuators which have good potential in future robotic applications. In parallel, a model of the actuator dynamics and the model-based controller (MPC and optimal control) have been synthesized for an anthropomorphic 7 Dofs arm actuated by antagonist-agonist pair of Pneumatic Artificial Muscles (PAMs) at each joint. Such model and controller is then integrated within the software environment developed by the team. Using the PAMs based anthropomorphic manipulator arm and the numerical simulator, tests are done in order to evaluate the potential of this actuator and compare with the human body capabilities.

Mots-Clés / Keywords
Pneumatic systems; Mckibben muscles; iLQR control; Nonlinear control; Agonist-antagonist actuation; Bio-inspired robots; Anthropomorphic systems;

138579
16328
04/10/2016

Using human-inspired model for guiding robot locomotion

C.VASSALLO

GEPETTO

Doctorat : Université de Toulouse III - Paul Sabatier, 4 Octobre 2016, 139p., Président: P.FRAISSE, Rapporteur: F.NORI, , Examinateur: J.PETTRE, Directeurs de thèse: P.SOUERES, O.STASSE , N° 16328

Lien : https://hal.laas.fr/tel-01393217

Diffusable

Plus d'informations

Résumé

Cette thèse a été effectuée dans le cadre du projet européen Koroibot dont l’objectif est le développement d’algorithmes de marche avancés pour les robots humanoïdes. Dans le but de contrôler les robots d’une manière sûre et efficace chez les humains, il est nécessaire de comprendre les règles, les principes et les stratégies de l’ homme lors de la locomotion et de les transférer à des robots. L’objectif de cette thèse est d’étudier et d’identifier les stratégies de locomotion humaine et créer des algorithmes qui pourraient être utilisés pour améliorer les capacités du robot. La contribution principale est l’analyse sur les principes de piétons qui guident les stratégies d’évitement des collisions. En particulier, nous observons comment les humains adapter une tâche de locomotion objectif direct quand ils ont à interférer avec un obstacle en mouvement traversant leur chemin. Nous montrons les différences entre la stratégie définie par les humains pour éviter un obstacle non-collaboratif et le stratégie pour éviter un autre être humain, et la façon dont les humains interagissent avec un objet si se déplaçant en manier simil à l’humaine. Deuxièmement, nous présentons un travail effectué en collaboration avec les neuroscientifiques de calcul. Nous proposons une nouvelle approche pour synthétiser réalistes complexes mouvements du robot humanoïde avec des primitives de mouvement. Trajectoires humaines walking-to-grasp ont été enregistrés. L’ensemble des mouvements du corps sont reciblées et proportionnée afin de correspondre à la cinématique de robots humanoïdes. Sur la base de cette base de données des mouvements, nous extrayons les primitives de mouvement. Nous montrons que ces signaux sources peuvent être exprimées sous forme de solutions stables d’un système dynamique autonome, qui peut être considéré comme un système de central pattern generators (CPGs). Sur la base de cette approche, les stratégies réactives walking-to-grasp ont été développés et expérimenté avec succès sur le robot humanoïde HRP-2 au LAAS-CNRS. Dans la troisième partie de la thèse, nous présentons une nouvelle approche du problème de pilotage d’un robot soumis à des contraintes non holonomes par une porte en utilisant l’asservissement visuel. La porte est représentée par deux points de repère situés sur ses supports verticaux. La plan géométric qui a été construit autour de la porte est constituée de faisceaux de hyperboles, des ellipses et des cercles orthogonaux. Nous montrons que cette géométrie peut être mesurée directement dans le plan d’image de la caméra et que la stratégie basée sur la vision présentée peut également être lié à l’homme. Simulation et expériences réalistes sont présentés pour montrer l’efficacité de nos solutions.

Abstract

This thesis has been done within the framework of the European Project Koroibot which aims at developing advanced algorithms to improve the humanoid robots locomotion. It is organized in three parts. With the aim of steering robots in a safe and efficient manner among humans it is required to understand the rules, principles and strategies of human during locomotion and transfer them to robots. The goal of this thesis is to investigate and identify the human locomotion strategies and create algorithms that could be used to improve robot capabilities. A first contribution is the analysis on pedestrian principles which guide collision avoidance strategies. In particular, we observe how humans adapt a goal-direct locomotion task when they have to interfere with a moving obstacle crossing their way. We show differences both in the strategy set by humans to avoid a non-collaborative obstacle with respect to avoid another human, and the way humans interact with an object moving in human-like way. Secondly, we present a work done in collaboration with computational neuroscientists. We propose a new approach to synthetize realistic complex humanoid robot movements with motion primitives. Human walking-to-grasp trajectories have been recorded. The whole body movements are retargeted and scaled in order to match the humanoid robot kinematics. Based on this database of movements, we extract the motion primitives. We prove that these sources signals can be expressed as stable solutions of an autonomous dynamical system, which can be regarded as a system of coupled central pattern generators (CPGs). Based on this approach, reactive walking-to-grasp strategies have been developed and successfully experimented on the humanoid robot HRP at LAAS-CNRS. In the third part of the thesis, we present a new approach to the problem of vision-based steering of robot subject to non-holonomic constrained to pass through a door. The door is represented by two landmarks located on its vertical supports. The planar geometry that has been built around the door consists of bundles of hyperbolae, ellipses, and orthogonal circles. We prove that this geometry can be directly measured in the camera image plane and that the proposed vision-based control strategy can also be related to human. Realistic simulation and experiments are reported to show the effectiveness of our solutions.

Mots-Clés / Keywords
Human-inspired models; Robot locomotion; Human-robot interaction; Motion capture system; Modèles inspirés de l’humain; Locomotion des robots; Interaction homme-robot; Robots humanoïdes; Système de capture de mouvement;

137753
16324
28/09/2016

Stratégies de marche avancées et inspirées de l'être humain pour les robots humanoïdes

M.NAVEAU

GEPETTO

Doctorat : Université de Toulouse III - Paul Sabatier, 28 Septembre 2016, Président: F.LAMIRAUX, Rapporteurs: C.CHEVALLEREAU, C.OTT, Examinateurs: P.B.WIEBER, Directeurs de thèse: O.STASSE , N° 16324

Lien : https://hal.laas.fr/tel-01393235

Diffusable

Plus d'informations

Résumé

Cette thèse traite du problème de la locomotion des robots humanoïdes dans le contexte du projet européen KoroiBot. En s’inspirant de l’être humain, l’objectif de ce projet est l’amélioration des capacités des robots humanoïdes à se mouvoir de façon dynamique et polyvalente. Le coeur de l’approche scientifique repose sur l’utilisation du controle optimal, à la fois pour l’identification des couts optimisés par l’être humain et pour leur mise en oeuvre sur les robots des partenaires roboticiens. Cette thèse s’illustre donc par une collaboration à la fois avec des mathématiciens du contrôle et des spécialistes de la modélisation des primitives motrices. Les contributions majeures de cette thèse reposent donc sur la conception de nouveaux algorithmes temps-réel de contrôle pour la locomotion des robots humanoïdes avec nos collégues de l’université d’Heidelberg et leur intégration sur le robot HRP-2. Deux contrôleurs seront présentés, le premier permettant la locomotion multi-contacts avec une connaissance a priori des futures positions des contacts. Le deuxième étant une extension d’un travail réalisé sur de la marche sur sol plat améliorant les performances et ajoutant des fonctionnalitées au précédent algorithme. En collaborant avec des spécialistes du mouvement humain nous avons implementé un contrôleur innovant permettant de suivre des trajectoires cycliques du centre de masse. Nous présenterons aussi un contrôleur corps-complet utilisant, pour le haut du corps, des primitives de mouvements extraites du mouvement humain et pour le bas du corps, un générateur de marche. Les résultats de cette thèse ont été intégrés dans la suite logicielle "Stack-of-Tasks" du LAAS-CNRS.

Mots-Clés / Keywords
Contrôle; Contrôle de marche; Robot; Robot humanoïde; Walking;

137735
15679
24/11/2015

Development of ionic electroactive actuators with improved interfacial adhesion: towards the fabrication of inkjet printable artificial muscles

A.SIMAITE

NBS, GEPETTO

Doctorat : INSA de Toulouse, 24 Novembre 2015, 215p., Président: F.MORANCHO, Rapporteurs: E.CATTAN, S.REGNIER, Examinateurs: R.M.SAUVAGE, Directeurs de thèse: C.BERGAUD, B.TONDU, Membre invité: P.SOUERES , N° 15679

Lien : https://tel.archives-ouvertes.fr/tel-01292026

Diffusable

Plus d'informations

Résumé

Les actionneurs à base de polymères électroactifs ioniques constituent une alternative prometteuse par rapport aux actionneurs conventionnels, en particulier lorsqu’une réponse comparable à celle d’un muscle naturel est recherché. Parmi eux, les actionneurs à base de polymères conducteurs constituent une voie prometteuse pour des applications biomédicale où la biocompatibilité, la compacité et un positionnement précis sont requis. Néanmoins, l’essor de dispositifs fonctionnels est fortement ralenti en raison de la faible efficacité d’actionnement et de la rapide dégradation des performances de ce type d’actionneurs. L’absence de rétroaction sur la force ou sur la position est également un autre aspect limitant le développement de cette approche. L’objectif de cette thèse est de proposer une technique de fabrication à grande échelle pour l’élaboration d’actionneurs à base de polymères électroactifs ioniques et permettant également l’intégration de capteurs pour un contrôle rétroactif. L’impression par jet d’encre est une technologie clé pour le dépôt de polymères et une des plus alternatives les plus prometteuses pour la production d’actionneurs à base de polymères conducteurs. Cependant, la fabrication d’actionneurs par technique jet d’encre n’est pas encore totalement maîtrisée à cause des propriétés rhéologiques des solutions de polymères conducteurs qui rendent difficile le contrôle de l’éjection de gouttes mais également en raison de la nature complexe des interactions entre la solution et l’échantillon qui peut conduire à une faible adhésion et un mauvais contrôle de l’infiltration de l’encre. Pour optimiser cette méthode de fabrication, des membranes hybrides contenant des ions ont été développées. Le greffage d’un monomère hydrophile par plasma argon avec un dépôt contrôlé en profondeur a été utilisé pour obtenir des membranes en polyfluorure de vinylidène (PVDF) avec des surfaces hydrophiles tout en conservant une zone centrale hydrophobe. Ces membranes hybrides ont permis d’obtenir, par dépôt de gouttes, des actionneurs de morphologies très variées à base de polymères conducteurs. En outre, la durée de vie d’actionneurs obtenus avec une solution conductrice de poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) a été sensiblement augmentée avec des déformations de plus de 0.6% sans qu’aucun signe de délamination ne soit perceptible. Enfin, la nature complexe des mécanismes physico-chimiques à l’origine des interactions entre le film polymère et la membrane poreuse a été mieux appréhendée durant ce travail. Les conditions nécessaires pour assurer une forte adhésion et les effets conduisant à un mauvais contrôle de l’infiltration ont été partiellement identifiés. Ces résultats ont permis de définir les paramètres clés concernant la préparation de la membrane et la composition de la solution polymère. En associant l’ensemble de ces résultats avec les exigences liées à l’utilisation de l’impression de solutions par jet d’encre, nous avons réalisé, en utilisant cette technique de dépôt, les premiers actionneurs ioniques à base de PEDOT:PSS.

Abstract

Ionic electroactive polymer based artificial muscles are promising alternative to traditional actuators, especially where compliant muscle-like response is desirable. Among them, conducting polymer actuators (CPAs) are most promising for biomedical applications, where biocompatibility, compactness and accurate positioning is essential. Nevertheless, development of applicable devices is hold down by their low efficiency and fast performance deterioration. The absence of a tactile, force or position feed-back is another feature limiting the development of functional devices. The goal of this thesis is to develop a fabrication technique for conducting polymer based actuators that could be up-scalable and enable facile integration of sensory feedback. Inkjet printing is key technology in the field of defined polymer deposition as well as in fabrication of strain sensors. It is also one of the most promising alternatives to prevalent fabrication of conducting polymer actuators. Nevertheless, inkjet printed actuators were not yet realized due to rheological properties of conducting polymer solutions that challenge jetting and the complex solution - membrane interactions, that lead to poor adhesion or uncontrolled infiltration. In order to enable this fabrication method, hybrid ion-storing membranes were developed. Argon plasma induced grafting-to of hydrophilic macromonomer with limited-indepth deposition was used to obtain polyvinylidene fluoride (PVDF) membranes with hydrophilic upper surfaces and hydrophobic centre. Functionalized PVDF membranes were shown to withhold good adhesion to the conducting polymer films and preserve electrically insulating layer in between them. Hybrid membranes were demonstrated to be advantageous in fabrication of CPAs by drop casting and enable production of actuators with various morphologies. Furthermore, fabricated poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) based actuators demonstrated long lifetime with no signs of delamination as well as large strain of more than 0.6%. In addition, the complex nature of the physico-chemical mechanisms of the interactions between the polymer film and the porous membrane was better understood during this work. The conditions necessary in order to ensure strong adhesion as well as circumstances leading to uncontrolled infiltration were partially identified. These were used to set up limits to membrane preparation and polymer solution composition. Combining obtained knowledge with known requirements for inkjet printable solutions lead to the realization of the first inkjet printed PEDOT:PSS based ionic actuators.

136344
15682
16/11/2015

De l'analyse du mouvement in-vitro à la génération de mouvements des systèmes anthropomorphes

B.WATIER

GEPETTO

Habilitation à diriger des recherches : Novembre 2015, 117p., Président: P.FRAISSE, Rapporteurs: L.CHEZE, E.BERTON, F.MULTON, Examinateurs: P.BRANCHER, P.SOUERES, P.G.ZANONE , N° 15682

Diffusable

136380
Les informations recueillies font l’objet d’un traitement informatique destiné à des statistiques d'utilisation du formulaire de recherche dans la base de données des publications scientifiques. Les destinataires des données sont : le service de documentation du LAAS.Conformément à la loi « informatique et libertés » du 6 janvier 1978 modifiée en 2004, vous bénéficiez d’un droit d’accès et de rectification aux informations qui vous concernent, que vous pouvez exercer en vous adressant à
Pour recevoir une copie des documents, contacter doc@laas.fr en mentionnant le n° de rapport LAAS et votre adresse postale. Signalez tout problème de dysfonctionnement à sysadmin@laas.fr. http://www.laas.fr/pulman/pulman-isens/web/app.php/