Retour au site du LAAS-CNRS

Laboratoire d’analyse et d’architecture des systèmes
Choisir la langue : FR | EN

5documents trouvés

18327
12/10/2018

Développement d'un système autonome de détection et de quanti-cation des microARNs avec une plateforme nano/uidique pour la prise en charge du cancer du pancréas

J.CACHEUX

MEMS

Doctorat : Université de Toulouse III - Paul Sabatier, 12 Octobre 2018, 193p., Président: L.BUSCAIL, Rapporteurs: E.DELAMARCHE, I.VAN SEUNINGEN, Examinateurs: A.CARRIER, Directeurs de thèse: P.CORDELIER, T.LEICHLE , N° 18327

Lien : https://hal.laas.fr/tel-01922268

Diffusable

Plus d'informations

Abstract

85% of patients affected by pancreatic adenocarcinoma (PDA) are diagnosed at an advanced stage, preventing effective care and curative treatments. Therefore, it is urgent to identify reliable biomarkers for the early detection of disease status, including relapse. MiRNAs (micro ribonucleic acids) are biomarkers of PDA, with demonstrated clinical value for early detection of tumors and monitoring of response to treatment. However, current methods of extraction and detection of miRNA are not compatible with clinical use. New technologies derived from micro and nanofabrication methods have the potential to facilitate the implementation of diagnostic tests, by offering a high degree of portability and robustness, short time to results at low cost. Here, we propose a nanofluidic platform coupled to fluorescence detection for the real time measurement of molecular interactions in a confined environment. We first describe the detection platform via a one-dimension theoretical model based on molecular dynamics to predict the capture of miRNAs into biofunctionalized nanochannels. The originality of the system lies in the non-homogeneous hybridization of miRNA targets onto the sensor. We demonstrate that the analysis of the spatial hybridization profile enables the determination of the affinity of the captured miRNA with the probe sequence in a wash-free single step. We then show the rapid discrimination (less than 10 minutes) of single nucleotide difference (SND) using this strategy. The performance of the device in the context of pancreatic cancer detection is discussed: the effect of sample preparation of complex biofluids is studied and two labeling approaches compatible with the detection of endogenous miRNAs are described and compared, leading to the detection of miRNAs extracted from model cell cultures of pancreatic cancer.

Résumé

85% des patients atteints de cancer du pancréas présentent au diagnostic des formes avancées de la maladie qui empêchent leur prise en charge thérapeutique efficace. Il est donc urgent de mettre en évidence des marqueurs diagnostics permettant de détecter plus tôt ces cancers, mais également leur rechute, afin d’améliorer leur prise en charge. Les miARNs (micro acides ribonucléiques) sont des biomarqueurs du cancer du pancréas, présentant une valeur clinique démontrée pour la détection précoce des tumeurs et le suivi de la réponse au traitement. Cependant, les méthodes actuelles d’extraction et de détection de ces molécules ne sont pas adaptées à une utilisation clinique. Les nouvelles technologies issues des méthodes de micro et nanofabrication ont le potentiel de permettre la mise en place de tests diagnostiques, offrant un haut degré de portabilité et de robustesse, une lecture en temps réel, et à bas coût. Nous proposons ici une plateforme nanofluidique couplée à une détection en fluorescence permettant la mesure en temps réel d’interactions moléculaires en milieu hyper-confiné. Nous décrivons dans un premier temps la plateforme de détection via un modèle théorique à une dimension basé sur la dynamique moléculaire permettant de prédire la capture spécifique des miARNs dans un nanocanal fonctionnalisé. L’originalité du système réside dans une accroche non homogène des miARNs sur la surface du capteur. Ainsi, nous démontrons que l’étude du profil spatial d’hybridation engendré permet de déterminer l’affinité du miARN capturé avec la séquence sonde en une seule étape, sans lavage. Nous démontrons également l’excellente spécificité du biocapteur qui permet la discrimination rapide (moins de 10 minutes) de SND (single nucleotide difference). Les performances du dispositif pour des applications au plus près des problématiques biologiques dans le cadre de la détection du cancer du pancréas sont enfin discutées : les effets de la préparation d’échantillon types biofluides complexes sur l’extraction de miARNs sont étudiés, puis deux approches permettant la détection de miARNs endogènes sont décrites et comparées, conduisant à la détection de miARNs extraits de cultures cellulaires modèles du cancer du pancréas.

Mots-Clés / Keywords
Cancer du pancréas; microARNs; Nanofluidique; Microscopie en fluorescence; Pancreactic cancer; Nanofluidics; Fluorescence microscopy;

144935
18529
21/09/2018

Étude des potentialités de la transduction diélectrique de haute permittivité pour les résonateurs NEMS et MEMS

C.FUINEL

MEMS

Doctorat : Université de Toulouse III - Paul Sabatier, 21 Septembre 2018, 103p., Président: L.BUCHAILLOT, Rapporteurs: I.DUFOUR, P.BASSET, Examinateurs: O.THOMAS, Directeurs de thèse: B.LEGRAND, Membre invité: C.BERGAUD , N° 18529

Lien : https://hal.laas.fr/tel-02003088

Diffusable

Plus d'informations

Résumé

L’essor du marché des MicroSystèmes ElectroMécaniques (MEMS : MicroElectroMechanial Systems) durant les deux dernières décennies s’est accompagné d’efforts de recherche soutenus pour élargir leurs champs d’application. Employés comme capteurs gravimétriques, des microstructures vibrant à la résonance permettent une détection ultrasensible pouvant aller jusqu’à la masse d’un seul proton pour les plus ultimes d’entre elles. Les capteurs MEMS gravimétriques fonctionnalisés apparaissent alors comme une alternative sans marquage aux technologies existantes de détection d’analytes chimiques et biologiques. Leur résolution est exacerbée par la réduction en taille, et un des principaux enjeux au développement de tels capteurs miniaturisés provient de la capacité à réaliser des moyens de transduction électromécanique - actionnement et détection électriques du mouvement mécanique - robustes et intégrés. Ces travaux de thèse présentent l’étude de la transduction diélectrique appliquée à la mise en vibration de microleviers et son intégration dans le cadre d’un procédé de fabrication collective sur silicium. L’efficacité de ce moyen de transduction est fortement liée à l’épaisseur et à la permittivité de la couche diélectrique employée et tire avantageusement partie de l’utilisation de matériaux à haute permittivité (« High-K ») en films d’épaisseur nanométrique. Dans les travaux présentés, trois matériaux diélectriques ont été étudiés : le nitrure de silicium faiblement contraint, l’alumine et l’oxyde d’hafnium. Ils ont été intégrés comme couche d’actionnement sur des microleviers de silicium. Les résultats obtenus démontrent la capacité d’actionnement des microstructures en utilisant ces couches diélectriques et également la possibilité d’effectuer simultanément actionnement et détection électrique sur un seul et même transducteur. Les perspectives ouvertes par ce travail concernent l’amélioration de la qualité des films minces employés et l’exploitation de matériaux de permittivité plus élevée. Ils forment un pas de plus vers des systèmes de détection fonctionnels intégrant reconnaissance chimique et premier étage de traitement du signal.

146317
16405
05/12/2016

Conception and characterization of flexible microelectrodes for implantable neuroprosthetic development

A.LECOMTE

MEMS

Doctorat : INSA de Toulouse, 5 Décembre 2016, 160p., Président: J.GRISOLIA, Rapporteurs: L.BERDONDINI, G.MALLIARAS, Examinateurs: G.OFFRANC-PIRET, Directeurs de thèse: C.BERGAUD , N° 16405

Lien : https://hal.laas.fr/tel-01417209

Diffusable

Plus d'informations

Résumé

Les neuroprothèses sont un domaine de recherche visant à restaurer les fonctions de personnes atteintes de déficiences sensorielles ou motrices. Les implants neuraux assurent une communication bidirectionnelle entre le cerveau et les ordinateurs. Ils permettent par exemple de favoriser la communication et la mobilité des personnes présentant une déficience motrice grave, rétablir la perception sensorielle (vision, audition) et réduire des symptômes neurodégénératifs (Parkinson). Les dernières avancées technologiques et la meilleure compréhension des facteurs déclenchant les réactions inflammatoires permettent d’envisager des implants corticaux chroniques fiables. Les implants traditionnels, basés sur des matériaux rigides comme le silicium ou le tungstène, sont souvent associés à une réaction immunitaire importante, du fait de leur pauvre biocompatibilité et du stress qu'ils induisent sur les tissus environnants. En ce sens, les implants flexibles, basés sur des biomatériaux souples, sont de plus en plus étudiés. Le substrat s'adapte aux micromouvements du cerveau (respiration, pulsation cardiaque) et de se fait promouvoir un meilleur contact tout en diminuant la réaction inflammatoire. Au cours de cette thèse, nous avons conçu et fabriqué un implant flexible à base de Parylène C, polymère souple de plus haute classe de biocompatibilité atteinte par la législation américaine (USP Classe VI), sur lequel des électrodes en or sont positionnées. Divers procédés de la microélectronique, comme la photolithographie et la gravure plasma utilisés communément pour le développement de microsystèmes en métal ou semi-conducteurs, ont été adaptés à la structuration d'implants en Parylène C. Par le biais de la culture cellulaire in vitro, nous avons montré que des cellules neuronales dérivées se différenciaient correctement sur les implants, validant ainsi la biocompatibilité des dispositifs. Cependant, ces nouveaux implants ont tendance à se courber à la surface du cerveau lors de leur insertion, empêchant le bon déroulement de l'implantation. Nous proposons ici une méthode basée sur l'intégration d'un film biorésorbable à l'arrière de l'implant. Ce film rigide permet d'assurer la pénétration de l'implant dans les tissus cérébraux, avant de se dissoudre de façon inoffensive dans l'organisme. Le film est réalisé en fibroïne de soie, extrait des cocons de vers à soie. Ce matériau, plus résistant que le Kevlar, est utilisé depuis des millénaires comme fils de suture biodégradable. La mise au point de l'extraction de la fibroïne de soie et sa structuration sur l'implant à l'aide d'un moule en polymère, ainsi que l’optimisation de la méthode de dépôt permet l'obtention d'une couche de soie en forme de gouttière, ce qui facilite l’insertion tout en limitant les contraintes et pressions indésirables lors de l'insertion. Nous avons montré à travers une série de test in vitro dans des gels et in vivo sur souris, que la soie augmentait par 100 la rigidité de l'implant et pouvait se résorber à taux accordable dans l'organisme. Un aspect primordial des implants neuraux concerne leur tenue et leur fiabilité sur le long terme. Si les implants traditionnels en silicium sont matière à de nombreuses études sur le sujet, les implants en polymères souples ne se sont développés que récemment et ne bénéficient pas encore du même recul. Nous proposons une étude préliminaire in vitro dans du liquide cérébro-spinal artificiel et in vivo sur souris permettant de mettre en évidence l'augmentation de la durée de vie de nos implants. Les résultats ont montré qu'au bout de six mois, les dispositifs ne présentent pas de signe de délamination, corrosion ou gonflement, ce qui se caractérise par la stabilité des propriétés électriques des électrodes. En conclusion, les implants conçus au cours de cette thèse présentent des caractéristiques prometteuses pour le développement de neuroprothèses implantables flexibles fiables sur le long terme.

Mots-Clés / Keywords
Biomatériaux; Implantation chronique; Neuroprothèse; Polymère flexible;

138281
16445
26/11/2016

Développement de nano-systèmes à base de nanofils pour l'interfaçage neuronal

A.CASANOVA

MPN, MEMS

Doctorat : Université de Toulouse III - Paul Sabatier, 26 Novembre 2016, 203p., Président: C.VILLARD, Rapporteurs: A.SOUIFI, C.PRINZ, Examinateurs: S.RENAUD, Directeurs de thèse: G.LARRIEU, L.NICU , N° 16445

Non diffusable

Plus d'informations

Abstract

Due to constant aging of world population, the struggle against neurodegenerative diseases is one of the major challenges in the near future and a better understanding of these pathologies goes through an improvement of basic mechanism knowledge involved in neuronal networks. In that scope, miniaturization of electronic components opens new perspectives for addressing such issues and holds great promise to improve the resolution levels. 1D-nanostructures such as NW-FET or NW-probes, offer real benefits thanks to their very small sections allowing to be less intrusive combined with their high surface-to-volume ratio leading to a higher affinity with cells. Here, we propose to co-integrate passive and active devices based on 1D nanostructures on the same platform (vertical NW probes and NW-FETs), to accurately compare advantages and drawbacks of each configuration regarding neuron electrical activity measurement. The two NW devices are fabricated with a large scale and cost effective top-down approach combining conventional lithography tools, plasma etching and sacrificial oxidation step to tune the nanostructure geometry. A core-shell-type device has been developed with a conductive part at the center, encapsulated by a conformal silicon oxide to insulate the probing nanostructures from liquid. In parallel, silicon NW-FETs are created with a planar NW channel (50 nm) connected by two highly doped low resistive regions. The device operation has been characterized in liquid environment (interface impedance of passive probes and pH sensing for transistors). Primary rat cortical neuronal cultures have been grown in-vitro with an unprecedented surface functionalization approach to precisely locate single neurons and guide the growth of their extensions. The approach allows the perfect location of somas on devices and the control of neurite growth at sub-micrometer scale. After 10 days-in-vitro, we detected for the first time spontaneous mammalian neuron action potentials using passive vertical NW-probes. Thereafter, several kinds of stimulation protocols have been implemented: (i) at the network level, with chemical stimulations such as KCl depolarization to mimic epileptic synchronization or with more refined stimulation (bicuculline). Local field potentials from few somas and action potentials from single neurons have been successfully recorded with a maximal signal-to-noise ratio of 10 for transistors compared to 40 for passive probes. (ii) At the cell level, where bi-directionality of passive probes have been used to locally trigger neuronal activity under electrical stimulation. Finally, multi-site recordings with vertical probes have been used to compare extra and intracellular probing.

Résumé

De par le vieillissement de la population mondiale, les maladies neurodégénératives touchent de plus en plus de personnes. Ces maladies, trouvant leur siège dans la plupart des cas au sein des neurones, restent mal comprises. Dans le but d’améliorer notre connaissance des dysfonctionnements causés lors de ce type d’agression, il est indispensable de raffiner notre analyse (neurones individuels). Les dispositifs à base de nanofils (nanosondes verticales ou transistors à NF) offrent une valeur ajoutée certaine concernant l'interfaçage de dispositifs nanoélectroniques avec les cellules vivantes. En effet, leurs sections sont beaucoup plus petites que les dimensions des cellules, les rendant peu intrusifs et leur grand rapport surface/volume permet une forte interaction NF-cellule. Dans ces travaux de thèse, nous proposons de co-intégrer ces deux types de capteurs passifs et actifs sur une même plateforme à l’aide d’un procédé basé sur une approche top-down, couplant des étapes de photolithographie conventionnelle et de gravure plasma. Afin de tirer parti de la dimension de ces capteurs, particulièrement adaptée à l’interfaçage de cellules individuelles, une approche innovante de fabrication de réseaux organisés de neurones par fonctionnalisation chimique de surface sera présentée. Basée sur l’auto-alignement de molécules d’adhésion grâce à un fort contraste hydrophile/hydrophobe de la surface de l’échantillon, elle permet de contrôler très précisément la localisation spatiale des somas et de guider la croissance des prolongements. De larges réseaux organisés de neurones ont ainsi pu être réalisés, avec un taux élevé de somas individuels (74% des sites occupés). La croissance des prolongements est également maîtrisée à l’échelle sub-micronique. Couplée aux dispositifs d’enregistrement présentés précédemment (nano-sondes passives et transistors à NF), cette maîtrise de la croissance des neurones ouvre de nombreuses perspectives pour le suivi multi-site de l’activité électrique au sein d’une culture neuronale. La chaîne d’acquisition nécessaire au transport de l’information enregistrée depuis le capteur (échelle nanométrique) jusqu’à la visualisation des signaux sera ensuite présentée. Des cultures de neurones ont été réalisées sur cette plateforme et une activité électrique spontanée (PAs et LFPs) a pu être enregistrée après 9DIV par les nanosondes passives. Ces résultats restent à ce jour, inédits avec de tels dispositifs passifs à nanofils sur des neurones de rongeurs. Plusieurs stimulations chimiques (dépolarisation KCl et potentialisation bicuculline) ont également été effectuées, permettant de valider le fonctionnement des transistors et de comparer les deux approches (passive et active). Le caractère multi-sites des enregistrements à l’aide des nanosondes a aussi été mis en évidence. Enfin, des stimulations électriques localisées à l’aide des nanosondes verticales ont été réalisées et des LFPs provenant de l’excitation des neurones voisins du capteur ont pu être enregistrés, démontrant ainsi la bidirectionnalité de l’interaction.

Mots-Clés / Keywords
Nanofils; Biocapteurs; Nano-sondes; Transistors; In-vitro; Cellules primaires; Nanowires; Biosensors; Neurons; Nano-probes; Primary cells;

138416
16472
22/11/2016

Lateral porous silicon membranes for planar microfluidic applications

Y.HE

MEMS

Doctorat : Université de Toulouse III - Paul Sabatier, 22 Novembre 2016, 147p., Président: F.MORANCHO, Rapporteurs: F.CUNIN, J.BRUGGER, Examinateurs: S.ARSCOTT, Directeurs de thèse: L.NICU, T.LEICHLE , N° 16472

Lien : https://hal.laas.fr/tel-01445669

Diffusable

Plus d'informations

Abstract

Lab on a chip devices aim at integrating functions routinely used in medical laboratories into miniaturized chips to target health care applications with a promising impact foreseen in point-of-care testing. Porous membranes are of great interest for on-chip sample preparation and analysis since they enable size- and charge-based molecule separation, but also molecule pre-concentration by ion concentration polarization. Out of the various materials available to constitute porous membranes, porous silicon offers many advantages, such as tunable pore size, large porosity, convenient surface chemistry and unique optical properties. Porous silicon membranes are usually integrated into fluidic chips by sandwiching fabricated membranes between two layers bearing inlet and outlet microchannels, resulting in three-dimensional fluidic networks that lack the simplicity of operation and direct observation accessibility of planar microfluidic devices. To tackle this constraint, we have developed two methods for the fabrication of lateral porous silicon membranes and their monolithic integration into planar microfluidics. The first method is based on the use of locally patterned electrodes to guide pore formation horizontally within the membrane in combination with silicon-on-insulator (SOI) substrates to spatially localize the porous silicon within the channel depth. The second method relies on the fact that the formation of porous silicon by anodization is highly dependent on the dopant type and concentration. While we still use electrodes patterned on the membrane sidewalls to inject current for anodization, the doping via implantation enables to confine the membrane analogously to but instead of the SOI buried oxide box. Membranes with lateral pores were successfully fabricated by these two methods and their functionality was demonstrated by conducting filtering experiments. In addition to sample filtration, we have achieved electrokinetic pre-concentration and interferometric sensing using the fabricated membranes. The ion selectivity of the microporous membrane enables to carry out sample pre-concentration by ion concentration polarization with concentration factors that can reach more than 103 in 10 min by applying less than 9 V across the membrane. These results are comparable to what has already been reported in the literature using e.g. nanochannels with much lower power consumption. Finally, we were able to detect a change of the porous silicon refractive index through the shift of interference spectrum upon loading different liquids into the membrane. The work presented in this dissertation constitutes the first step in demonstrating the interest of porous silicon for all-in-one sample preparation and biosensing into planar lab on a chip.

Mots-Clés / Keywords
Anodization; Filtration; Ion concentration polarization; Membranes; Microfluidics; Optical biosensors; Porous silicon;

138517
Les informations recueillies font l’objet d’un traitement informatique destiné à des statistiques d'utilisation du formulaire de recherche dans la base de données des publications scientifiques. Les destinataires des données sont : le service de documentation du LAAS.Conformément à la loi « informatique et libertés » du 6 janvier 1978 modifiée en 2004, vous bénéficiez d’un droit d’accès et de rectification aux informations qui vous concernent, que vous pouvez exercer en vous adressant à
Pour recevoir une copie des documents, contacter doc@laas.fr en mentionnant le n° de rapport LAAS et votre adresse postale. Signalez tout problème de dysfonctionnement à sysadmin@laas.fr. http://www.laas.fr/pulman/pulman-isens/web/app.php/