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Motivation: SkyScanner Project

Adaptive Sampling of Cumulus Clouds with a Fleet of UAVs:
Clouds remain an uncertainty in
current atmospherical models:

Characterize the evolution of
parameters (3D wind, liquid water
content, etc.)

−→ dense spatial sampling
Adaptive Sampling vs.
Systematic Sampling:

4D map of parameters, with only 1D
manifolds available
Information efficiency
−→ quantification of uncertainty
Energy efficiency
−→ mapping and exploiting vertical wind.

→ Gaussian Process Regression
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MesoNH Simulation and Sampling Architecture

UAV Model

Atmospheric
Simulation

Wind Sensors
Model

Trajectory
Planner

Wind GP 
Regression 

Models

Hyperparameter
optimization

Wind prediction

Sequence
of

Commands

UAV Trajectory

3D Wind 
Ground Truth

3D Wind 
Ground Truth

3D Wind
Samples

@1 Hz

@ 0.1 Hz

Large Eddy Simulation(LES) of non-precipitating shallow cumulus clouds.
Domain: 3540s × 4km × 4km × 4km (3TB of data),

Grid: 3540x161x400x400 (t , z, x , y) and dt = 1s, dx = dy = 10m,
dz = 10m...100m; dz = 10m for boundary and convective cloud layer.
Variables: 3D wind, temperature, pressure, liquid water content(LWC),
etc.

→ Wind predictions needed under real-time constraints
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Introduction to Gaussian Process Regression

Bayesian Machine Learning framework
Generalization of the M-dim. Gaussian distribution to stochastic
processes(functions), i.e. a Gaussian distribution over functions:

Two key ingredients
Mean function m(x): Center for the distribution of functions
Covariance function, matrix k(x, x′), Σ:
Defines smoothness and variability. Quantifies similarity.
If x,x′ similar −→ outputs similar
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Introduction to Gaussian Process Regression

Making predictions
With training data: X,Y | new input vector x?| mean function m(x) | covariance
matrices ΣX,X = [k(xi , xi )] , i , j = 1, ...,n | Σx?,X = [k(x?, xi )] , i = 1, ...,n |

p (y?|x?,X,Y) = N (y?,V[y?]) , (1)

y? = m(x?) + Σx?,XΣ−1
X ,X (Y−m(X)), (2)

V[y?] = k(x?, x?)− Σx?,XΣ−1
X ,X ΣT

x?,X (3)

Advantages of GPR
Inbuilt estimation of uncertainty adapted to test inputs

Limitations
Mean function and covariance function are parameterized
−→ Expensive optimization, usually Bayesian Marginal Log-Likelihood
(several iterations of O(n3))
With no prior knowledge about process, “off-the-shelf”:
−→ m(x) = 0, k(x, x′) = σ2 exp

(
−0.5|x−x′|2

l2

)
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Introduction to Gaussian Process Regression

Types of prior knowledge to improve GPR:
1 Determining the mean function m(x)

2 Determining type and parameter distribution of covariance function
k(x, x′)

3 If output multidimensional, then determine and exploit correlations
between outputs

Approaches to determine prior knowledge
Brute Force:

Cross-validate implementations that combine several mean-functions,
covariance functions and output-correlation structures
−→ No real understanding about the process
−→ Computational complexity O(n3)

Spatial Statistics, Geostatistics:
Estimate statistics from data and do regular curve fitting on these statistics
to infer the priors
−→ Computational complexity: statistics O(n), curve fitting O(m3), m << n
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Spatial Statistics: The Variogram

2γ(x, x′) is a measure of
dissimilarity between x
and x′

With assumptions
Stationarity and Isotropy :
2γ(h), distance
h = |x− x′|
Estimated from the data
and then fitted with a
model
Basis for spatial prediction
in Geostatistics, i.e.
Kriging
Non-converging empirical
variograms indicate
problems with Stationarity
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Spatial Statistics: Estimating and fitting the Variogram
Estimating

2γ̂(h) ≡ 1
|N(h)|

∑
N(h)

(Z (si )− Z (sj ))2,h ∈ Rd , (4)

N(h) ≡ {(si , sj ) : si − sj = h; i , j = 1, ...,n} (5)

y

x
h1

h1

h1

h1

h1

h1

h2

h2

h2

γ(|h|)

|hx |h1 h2
Fitting

k∑
j=1

|N(h(j))|
(

γ̂(h(j))

γ(h(j); θ)
− 1
)2

(6)
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Spatial Statistics: The Variogram and Gaussian
Process Regression
Converging variogram models and stationary covariance functions are related:

γ(h) = k(0)− k(h), (7)
k(h) = γ(∞)− γ(h), (8)

Examples:
Exponential Variogram
γ(h) = σ2(1− exp(−|h|l ))

Exponential Covariance Function
k(h) = σ2 exp(−|h|l )

Diego Selle (RIS @ LAAS-CNRS, RT-TUM) Master’s Thesis Presentation October 12, 2016 10 / 19



Spatial Statistics: The Variogram and Gaussian
Process Regression
Converging variogram models and stationary covariance functions are related:

γ(h) = k(0)− k(h), (7)
k(h) = γ(∞)− γ(h), (8)

Examples:
Exponential Variogram
γ(h) = σ2(1− exp(−|h|l ))

Exponential Covariance Function
k(h) = σ2 exp(−|h|l )

Diego Selle (RIS @ LAAS-CNRS, RT-TUM) Master’s Thesis Presentation October 12, 2016 10 / 19



Implementation: Vertical Wind Empirical Variograms

5 Clouds were segmented, and used to estimate variograms in t , z, x , y

Values at big distances are very similar in x , y
Variograms continue to grow over theoretical sill in x , y
−→ Non-stationarity, mean function?
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Implementation: New coordinates

Polar coordinates based on center of LWC more “natural”
Vertical winds near the center are higher, near boundaries lower
−→ Radial mean function?
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Implementation: Estimating the Mean Function

Normalization of radius and vertical wind at center
Over 300.000 radial trends to estimate the median
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Implementation: Detrended Empirical Variograms

Clouds were detrended with the mean function
New variograms were computed in the four polar directions t , z, ϕ, r
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Implementation: Best Fit Detrended Variograms

Around 20-30 variograms with detrended vertical wind were fitted
−→ Parameters of covariance function
Out of four possible models tested, Exponential Variogram best fit
Similarity in sills suggests that range anisotropy is more accentuated
−→ γ(|r |), r2 ≡ hT Mh, M = diag(1/l2xi

)
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Implementation: Testing the new GPR
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Summary and Outlook

Summary
Prior on mean function X

Prior on covariance function X

Improved performance vs. “off-the-shelf” GPR X

Outlook
Repeat line of analysis on other variables, e.g. liquid water content(LWC)
Exploit correlations between LWC and vertical wind
Integrate polar coordinates preprocessing to current adaptive sampling
scheme
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Questions

Questions?
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