
A Sigma-Point Kalman Filter for remote sensing
of updrafts in autonomous soaring

Martin Stolle, Yoko Watanabe and Carsten Döll

Abstract Autonomous soaring is a promising approach to augment the endurance of
small UAVs. Most of the existing work on this field relies on accelerometers and/or
GPS receivers to sense thermals in the proximity of the vehicle. However, thermal
updrafts are often visually indicated by cumulus clouds that are well characterized
by their sharp baselines. This paper focuses on a cloud mapping algorithm which
estimates the 3D position of cumulus clouds. Using the meteorological fact of a
uniform cloud base altitude a state-constrained sigma-point Kalman filter (SCSPKF)
is developed. A method of using the resulting cloud map and its uncertainty in the
path planning task to realize a soaring flight to a given wayoint is presented as a
perspective of this work.

1 Introduction

Accelerated by a breakthrough in micro electromecanical systems (MEMS), small
UAVs and the role they play in our society, be it military or civil, have grown in
importance in the near past. However, their utility is still restricted due to small pay-
load capacities as well as poor endurance and small operational ranges. One existing
idea to overcome these still predominant drawbacks, is to apply flight control and
guidance algorithms for soaring flight [1, 2, 3]. The soaring flight makes use of up-
drafts to lift the UAV and hence to reduce the transported mass dedicated to energy
(battery or fuel). Moreover, soaring UAVs operate silently which clearly is a benefit
for military purposes.

Martin Stolle · Yoko Watanabe · Carsten Döll
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Generally speaking, soaring flight combines all kind of techniques to keep an un-
powered aircraft airborne. Dynamic soaring for instance is a technique where the
vehicle harnesses energy from horizontal wind gradients. In thermal soaring energy
is gained by relying on uprising currents of air. These buoyant plumes of rising air
result from gradients in the earth’s surface heating and can reach heights of up to
4000m above ground according to [4]. In cross-country soaring, gliders fly beyond
the gliding distance from the initial take-off point performing waypoint navigation.
Amongst existing approaches to automatic cross-country soaring, the work of Ed-
wards et al. [5] is the only one which includes flight testing. His work lead to the
participation in a cross-country soaring challenge for remotely piloted gliders and
the performance of a fully autonomous soaring flight over a distance of 50km. With
no a priori information about thermal locations in the far environment, the flight
path was defined as the direct line between two consecutive waypoints. The aircraft
flight control mode was set to thermal centering mode, when encountering strong
enough thermals on the path - detected by Inertial Measurement Unit (IMU) and
GPS measurements. With this suboptimal flight path, the UAV could only benefit
from a subset of possible updrafts - more precisely those that were directly located
on the line of sight to a given waypoint. Evidently this approach is limited to con-
ditions where a strong density of thermals is provided along the direct path and by
consequence carries a significant risk of mission failure.
The author of [6] considered autonomous cross-country soaring from a top down
approach and proposed path planning algorithms assuming that a perfect map with
pinpoint thermal locations is at hand which raises doubts about its applicability be-
yond the synthetic case of computer simulations.
Human glider pilot mostly rely on their vision to locate thermal updrafts indicated
by cumulus clouds. Doing so they can fly distances of up to 3000km. Inspired by
these performances, the paper on hand describes the development of an algorithm
for remotely sensing thermal updrafts by locating cumulus clouds. An increased un-
certainty of a thermal position estimate can significantly augment the time the UAV
will spend on hitting the thermal and thus impacts the cross-country soaring perfor-
mance. Therefore, the filter was designed to not only provide fast convergence but
also a confident estimation of the thermal position uncertainty. Finally, a perspec-
tive is presented on how to take into account the uncertainty of estimated thermal
positions in the cost of a cross-country path planning algorithm.

2 Cumulus clouds and thermal updrafts

Consider a UAV flying in a sky that is partly covered by cumulus clouds. Depending
on their stage, these clouds are the most important visual indicator for thermals that
glider pilots rely on during thermal soaring.
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2.1 Thermals and their visible features

Vision-based object recognition algorithms detect objects in the real world from an
image of the real world based on models. Since algorithmic description of this task
still remains difficult, especially when dealing with objects such as clouds, varying
in shape, color and texture, most simple and informative features are to be used in
order to augment the recognition performance.
Clouds that are based on thermals, in general undergo a certain decay and rebirth
process consisting of two different stages. As long as a thermal source on the ground
feeds the cloud, it will continue growing and remains in the first building stage
(fig. 1a). In case the thermal source vanishes, the cloud will start dying out (fig. 1b).
The stages of a cumulus cloud are indicated by a variety of visible signs. For a grow-

(a) Growth (b) Decay

Fig. 1: Growth and decay of a cumulus cloud

ing cumulus, these features include sharp outlines as well as a dark and flat baseline.
In contrast, the shape of a dying cloud is poorly defined and its baseline is rather
frayed. In addition to these contrast and shape indicators, the color of a cumulus
cloud varies as well during its cycle. While a growing cumulus cloud will tend to
be gray or white, a dying cloud appears to be off color since its moisture particles
evaporate which results in a change of its reflectivity.
Regarding these facts, the most simple-to-detect feature of a far away growing or
mature thermal is the baseline of its related cumulus. In this paper, it is supposed
that an image processing algorithm capable of extracting the baseline center of a cu-
mulus cloud, as illustrated in fig. 2 is available. A simple but yet efficient algorithm
for edge detection could therefore be used as presented by the author of [7].
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Fig. 2: Baseline detection of a cumulus cloud

2.2 Dynamics of cumulus clouds

Solar radiation causes heating of the earth’s surface. Variations in the heating of
the ground result in rising parcels of air. On a day with typical soaring weather
conditions, these parcels will first rise under dry adiabatic conditions i.e. without
condensation. Once reaching the Cumulus Condensation Level (CCL) which is the
point where the relative humidity of the parcel attains 100%, water vapor starts con-
densing and cumulus cloud droplets are formed. As shown in [8] and illustrated in
fig. 3, the cumulus cloud base altitude zc is the line intersection of the Dry Adiabatic
Lapse Rate (DALR) and the Dew Point (DP).

zc =
T0−Td,0
∂T
∂ z −

∂Td
∂ z

≈ 125(T0−Td,0)[
m
K
] (1)

with T as the air temperature and Td the dew point temperature. Note that the factor
125 corresponds to a temperature of 20◦C and barely varies with the temperature.
The index 0 stands for the temperature on ground. The index e (as used in fig. 3) is
used for a local North East Down (NED) frame.
When flying over a region with constant geological and orographical structure, only
tiny variations of the temperature difference between air and DP can be found [9].
Consequently, the cloud base is nearly uniform as depicted in fig. 3 which linearly
constraints the altitude of each individual cloud base. The following section de-
scribes a cloud mapping algorithm that incorporates this constraint.



A Sigma-Point Kalman Filter for remote sensing of updrafts in autonomous soaring 5

(a) Cloud base definition
(b) Cumulus clouds with uniform cloud base al-
titude

Fig. 3: Dynamics of cumulus clouds

3 Cloud mapping algorithm

Combining the UAV’s state estimates with the output of the image processing al-
gorithm, it becomes possible to estimate the 3D position of clouds in the inertial
reference frame (index g). This problem is referred to as bearings-only target local-
ization.

3.1 State definition and process model

With the cloud map containing the individual positions of all n clouds that are en-
countered during a flight, the 3×n dimensional state vector x is defined as

x =
[
xT

1 xT
2 . . . xn

T ]T (2)

where xi represents the cloud position of a single cloud in a local NED frame. The
index g is not further carried for the sake of better readability. In general, the wind
velocity has an effect on the drift of cumulus clouds, even if due to the inertia of the
thermal air (note that the mass of a cumulus cloud can measure into the thousands
of tons), cumulus clouds drift much slower than the surrounding air. Therefore, we
consider a scenario with no cloud drift corresponding to weather conditions with
only little or no horizontal wind. This assumption is legitimate, since algorithms
will be tested on a small UAV glider whose flight envelope restricts operation to low
wind conditions. In that case, the state transition equation for a single cloud xi can
be modeled as
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xi,k = f (xi,k−1)+wi,k−1 = xi,k−1 +wk−1 (3)

where w is the white and Gaussian process noise with covariance Q i.e.

w∼ w(0,Q) (4)

3.2 Measurement model

3.2.1 Pixel coordinates of cloud baseline’s center

A forward looking camera is mounted on the UAV with a fixed offset from the
vehicles center of gravity (CG) as well as a known angular offset from the body axis.
At each time instance, the image processing algorithm outputs the center positions
of the m cumulus cloud baselines in the image resulting in a 2×m dimensional
measurement vector

yip =
[
yT

ip,1 yT
ip,2 . . . yT

ip,m
]T

(5)

Note that the index ip is used for vectors in the image frame in pixels and the index
im denotes vectors in the image frame in meters as described in fig. 4. To project
vectors from the camera frame (index c) onto the image plane, a pinhole camera
model as shown in fig. 4 is used.

Fig. 4: Pinhole camera projection model

A transformation from the inertial to the image frame in pixels is given by

yip =
1
ε

Tipg x (6)
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where ε is the image depth. The transformation matrix Tipg includes the translation
from the target to the vehicle Tvg, the rotation from the vehicle to the body frame
Tbv, the combined translation and rotation from the body to the camera frame Tcb
as well as the combined projection and unit conversion (m to px) C from the camera
frame onto the image plane (see fig. 4)

Tipg = CTcbTbvTvg (7)

with the camera calibration matrix C being defined as

C =

[
0 fx 0x 0
− fy 0 0y 0

]
(8)

The two quantities fx and fy are function of the focal length f and the unit conver-
sion factors Sx and Sy

fx =
f

Sx
and fy =

f
Sy

where the unit conversion is given by

Sx =
yim

xip−0x
and Sy =

xim

−yip−0y

Note that the parameters 0x and 0y are the offsets to the center of the image from the
upper left hand corner.
Adding Gaussian white measurement noise v, with zero mean and covariance R, the
discrete measurement equation is stated as

yk = h(xk)+vk =
1
ε

Tipg,kxk +vk = Hxk +vk (9)

Note that from here on the index of the measurement vector (ip) is not further carried
for the sake of better readability.

3.2.2 Pseudo measurement for the altitude constraint

Significant filter performance augmentations can be reached when including the dy-
namic relation between cloud base altitudes as a state constraint in the estimation
process. Applied to the path planning, a faster convergence of position estimates
and covariances will as well invoke a faster reduction of the uncertainty ellipses.
Consequently, the cross- country speed of the UAV glider increases, since less time
will be spent on encountering thermals.
However, this benefit comes with a price. The assumption of a uniform cloudbase
is an approximation of the reality, and thus only a soft constraint where it is hard to
detect constraints violations during estimation.
To comprise the uniform cloud base state constraint, the 2×m dimensional mea-
surement vector eq. (9) is augmented with the pseudo measurement d
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ya =

[
y
d

]
=

[
H
D

]
x+
[

v
v1

]
(10)

where d is a null vector of dimension n and D is the n×3n-dimensional constraint
matrix with diagonal elements D1 =

[
0 0 (1− 1

n )
]

and off-diagonal elements D0 =[
0 0 −1

n

]
carrying the geometrical state restriction that the individual cloud bases zi

equals to the mean cloud base z̄. v1 is the white Gaussian noise of the state constraint
with covariance R1.

3.3 Estimation Algorithm

The bearings-only target localization is a highly nonlinear estimation problem. A
variety of nonlinear filters has been proposed to solve this problem. What is com-
mon to nearly all of these methods, is the idea of providing a least squares estimate
of the process’s state. The standard approach for nonlinear estimation is the Ex-
tended Kalman Filter (EKF) that however comes with two significant drawbacks.
Not only that the computation of the Jacobians is usually cumbersome, but if the
linearization is poor, the estimated state covariance will tend to be inconsistent and
in the worst case overconfident as discussed in [10]. Projected to the problem of
autonomous cross-country soaring, this will erroneously tighten the error ellipsoid
associated to the estimated position of a cloud and potentially results in a thermal
search within an area of sinking air.
A common way to cope with this known weakness of the EKF is to artificially mag-
nify the state covariance after each update or simply to drop certain observations.
This is however an unfortunate and iterative procedure, since it discards information
that is potentially useful.
A main challenge of the bearings-only target localization is caused by its lack of
depth-observability. With the trajectory having a significant impact on the observ-
ability, there have been attempts [11] to design trajectories that optimize the target
observability. However, in the case of autonomous cross-country soaring where the
clouds are far away from the observing vehicle and the UAV aims to minimize en-
ergy consumption, favoring target observability in the trajectory design is inefficient.
More recently, a group of algorithms [12, 13, 14, 15] has been published to address
the issues of the EKF by using deterministic sampling approaches circumventing
both laborious linearization and suboptimal performance due to poor linearizations.
These algorithms referred to as sigma-point Kalman filters (SPKF) as well follow
the prediction-correction procedure of the Kalman filter. But rather than linearizing
the nonlinear system equations, they use the intuition that it is easier to approximate
a probability distribution than it is to approximate an arbitrary nonlinear function or
transformation. This is done by first propagating a weighted set of samples called
sigma points X through a nonlinear function. Then, the statistic properties of the
propagated state are recaptured. The principle behind this probability distribution
approximation is called Unscented Transform (UT) and was first presented in [12].
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SPKF show a certain resemblance to Particle Filters (PF) in the way that the prob-
ability distribution is approximated by a set of points. However, they operate with
a much lower number of points reducing computational effort which renders them
more appropriate for real time implementation. This has led to the SPKF of [14]
where the authors present a filter, capable of operating with a minimum set of sigma
points that contains the most important information of the state’s probability distri-
bution.
A state-constrained version of this filter has been developed to estimate the position
of clouds. The data flow during the estimation process is depicted in fig. 5. In the

Fig. 5: Data flow during estimation

following, the individual tasks during estimation are discussed.

3.3.1 Prediction

Before conducting the actual prediction using the UT, a set of weight vectors ηηη is
computed. These vectors depend on both the scaling parameters α, β , κ and the
state dimension L = 3×n.

λ = α
2 +(L+κ)−L

η
m
0 = λ/(L+λ )

η
c
0 = λ/(L+λ )+1−α

2−β

η
m
i = η

c
i = 1/[2(L+λ )], i = 1, ...,2L (11)

According to this notation, the indices m and c in eq. (11) stand for measurement and
covariance respectively. With the state estimate prior to k, the sigma points follow
as
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Xk−1 =
[
x̂k−1 x̂k−1 +

√
L+λ

√
Pxx

k−1 x̂k−1−
√

L+λ
√

Pxx
k−1

]
(12)

Note that there are different approaches to compute the square root of a matrix.
As suggested in [16], the lower Cholesky decomposition method is applied i.e.√

P = chol(P). Each of the sigma points X (i) is then propagated through the state
transition function eq. (3) yielding the propagated state

X (i)
k|k−1 = f(X (i)

k−1) for i = 1, ...,2L+1 (13)

In this notation, the index k|k−1 stands for the state at time k incorporating knowl-
edge prior to k and the parenthesized superscript stands for the index of the sigma-
point. Also note that (eq. (13)) is only mentioned for the purpose of completeness,
since the propagation does not impact the state as can be seen in eq. (3).
With the weight vector ηηηm

i the mean of the propagated state is

x̂k|k−1 =
2L+1

∑
i=1

η
m
i X

(i)
k|k−1 (14)

Given the process noise covariance Q = E[wwT ], the propagated state covariance
matrix yields

Pxx
k|k−1 = Q+

2L+1

∑
i=1

η
c
i (X

(i)
k|k−1− x̂k|k−1)(X

(i)
k|k−1− x̂k|k−1)

T (15)

Each of the sigma points is then processed through the nonlinear measurement equa-
tion, leading to a set of 2L+1 predicted observations

Y(i)
k|k−1 = h(X (i)

k|k−1) for i = 1, ...,2L+1 (16)

This yields the mean of the predicted measurement

ŷk|k−1 =
2L+1

∑
i=1

η
m
i Y

(i)
k|k−1 (17)

Summing the measurement covariance R and the covariance of the transformed
state, the predicted measurement covariance is

Pyy
k|k−1 = R+

2L+1

∑
i=1

η
c
i (Y

(i)
k|k−1− ŷk|k−1)(Y

(i)
k|k−1− ŷk|k−1)

T (18)

The prediction step is accomplished with the computation of the cross covariance
matrix

Pxy
k|k−1 =

2L+1

∑
i=1

η
c
i (X

(i)
k|k−1− x̂k|k−1)(Y

(i)
k|k−1− ŷk|k−1)

T (19)
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3.3.2 Data association, measurement augmentation and adjustment

Depending on meteorological conditions, the density of the thermals in an area can
significantly vary [4]. Assuming that each thermal is visible through convection i.e.
brings out a cumulus cloud, multiple clouds will simultaneously lie in the camera’s
field of vision. Therefore, precise matching between incoming measurements and
already registered estimates is required to avoid filter divergence. Also, measure-
ments from newly detected clouds have to be distinguished from those belonging to
already initialized ones.

Data association

In this work, we apply a gated nearest neighbor approach based on the Mahalaboni
distance. Where the underlying idea is to compute the probability that a predicted
measurement corresponds to an incoming measurement. This technique has proven
to work reliably [17, 18], provided that the uncertainty of the predicted measure-
ments Pyy

k|k−1 is sufficiently small.
At each time instance with incoming measurements for m detected clouds, the mea-
surement vector is defined by eq. (9). A score r is defined and computed for the
m×n combinations between predicted measurements and incoming measurements

r(i j)
k = (y( j)

k −Y(i)
k|k−1)P

yy,i
k|k−1(y

( j)
k −Y(i)

k|k−1)
T (20)

An estimate with index i is updated with a measurement with index j if their com-
mon score ri j is the minimum score of all the scores belonging to the measurement j
and is smaller than some fixed threshold known as gate g. This procedure leads to a
2× l dimensional vector ζζζ k =

[
ζζζ k,y ζζζ k,ŷ

]
containing the indices of the l associated

pairs of estimates i and measurements j.
If not all measurements have been related to an initialized estimate, those measure-
ments that have erroneously not been related and the ones that arise from a newly
detected cloud have to be distinguished. Therefore, for all of the measurements that
have not been associated, it is checked if they attain the minimum score to any of the
n estimates. In case this statement is false, measurement j is considered as a newly
detected cloud and used to initializue a new cloud state. Otherwise, it is rejected.
The indices of measurements that are used to initialize new clouds are stored in a
vector ξξξ k.

Adjustment

As illustrated in fig. 5, the predicted quantities ŷk,P
yy
k|k−1,P

xy
k|k−1 and the measure-

ment vector yk are adjusted by selecting the relevant elements (index vector ζζζ )
which have been related to a measurement. Where the index e stands for effect
(see fig. 5).
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yk,e = ŷk(ζζζ k,y) with ζζζ k,y =
[

j1, . . . , jl
]T and 0≤ l ≤ m

ŷk|k−1,e = ŷk|k−1(ζζζ k,ŷ) with ζζζ k,ŷ =
[
i1, . . . , il

]T
Pyy

k|k−1,e = Pyy
k|k−1(ζζζ k,ŷ,ζζζ k,ŷ)

Yk|k−1,e =Yk|k−1(ζζζ k,y,ααα) with ααα =
[
1, . . . n

]
Pxy

k|k−1,e = Pxy
k|k−1(ααα,ζζζ k,ŷ) (21)

Measurement augmentation

According to eq. (10), both the adjusted measurement yk,e as well as the adjusted
and predicted quantities ŷk,e,Yk|k−1,e vector are augmented using the state constraint
on the uniform cloud base yielding

yk,a =

[
yk,e
dk

]
and ŷk,a =

[
ŷk|k−1,e

d̂k

]
(22)

where d̂ containts the n variations from the individual cloud base zi to the mean
cloud base z̄

di = zi− zc

Also, the measurement noise is augmented such that Ra = diag(R,R1).
The prediction steps eqs. (17) to (19) are then recomputed for the augmented quan-
tities yielding ŷk,a,P

yy
k|k−1,a and Pxy

k|k−1,a.

3.3.3 Correction

Using the adjusted predicted quantities as well as the adjusted measurement vector,
the classical Kalman correction step is accomplished following

Kk = Pxx
k|k−1(P

yy
k|k−1,a)

−1

x̂k = x̂k|k−1 +Kk(yk,a− ŷk|k−1,a)

Pxx
k = Pxx

k|k−1−KkPyy
k|k−1,aKT

k (23)

3.3.4 Cloud initialization and state augmentation

Each time a new cloud is detected, both its initial estimate x its error covariance
Pxx have to be computed from only one measurement. The state initialization causes
potential difficulties, because the data association is prone to errors in the covariance
of the predicted estimate.
Clouds are assumed to have approximately the same base altitude. Therefore, it is
straightforward to compute the initial state estimate by calculating the plane-line
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intersection between the cloud base plane and the line-of-sight from the current
vehicle position p along the bearing b to the new cloud, if some knowledge of the
cloud base z0 is given. For the very first cloud, an a-priori estimate of the cloud base
z0 is used. Subsequent clouds are initialized based on the actual estimated altitude.
The initial cloud position (

[
x y z0

]T ) can be obtained by the function s with an input
vector m =

[
p q z0

]T as shown in eq. (24)

x =

[
x
y

]
= s(m) =

[
px
py

]
+µ

[
bx
by

]
(24)

Where the bearing b and the magnitude µ are defined as:

b = T−1
ce


yx
yy
1
1

 and µ =
z0− pz

bz
(25)

Unscented transformation proves again to be a convenient method to convert the
measurement uncertainty Pm into an initial state covariance

Pm =

σ2
yx 0 0
0 σ2

yy 0
0 0 σ2

z0

=

[
R 0
0 σ2

z0

]
(26)

where σz0 is the standard deviation of the a-priori knowledge on z0. Defining the
incoming measurement vector M0, the related 2Li +1 sigma points result as

M=
[
M0 M0 +

√
L+λ

√
Pm M0−

√
L+λ

√
Pm
]

(27)

Where the state dimension is Li = 3 when dealing with a single cloud. Each of the
2L+ 1 sigma points is instantiated through the initialization function s(m) which
yields the matrix O containing seven 3D positions of the cloud

O j = s(M j) (28)

Both the initial state estimate x0 and the state covariance Pxx
0 are then obtained

x = ō =
2L

∑
j=0

η
c
i o j Pxx =

2L

∑
j=0

η
c
j (O j− ō)(O j− ō)T (29)

As illustrated in fig. 5, the corrected state and covariance estimate are augmented
with the state and covariance of the initialized clouds.
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4 Simulation Results

3DOF simulations were conducted for the following two purposes: First, to demon-
strate that the SPKF is able to provide a convergent and confident estimation of
cumulus cloud positions that can reliably be used for path planning algorithms. Sec-
ond, that the filter formulation with a soft state constraint based on the assumption
of a uniform cloud base leads to faster and still confident convergence of both state
and covariance estimation - even in case of strongly varying cumulus cloud bases.

4.1 Simulation scenario and settings

A forward looking camera was moved along a circular and climbing trajectory (as
shown in fig. 6) for an observation duration of 300s to simulate the estimation pro-
cess during a standard thermaling flight where the clouds repeatedly appear and
disappear on the image sensor due to the circular trajectory.

−100

0

100

−100

0

100
0

100

200

300

400

500

y
g
 [m]x

g
 [m]

−
z g [m

]

Fig. 6: Camera trajectory

Cumulus clouds were located around the center of the trajectory for two scenarios
as depicted in fig. 7.Note that the camera’s trajectory is the circle around the origin.
It appears small due to the small scale of the map.
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(b) Second scenario

Fig. 7: Cloud position estimation scenarios

The first scenario (fig. 7a) was chosen to demonstrate the performance of an un-
constrained filter formulation by observing only one cloud which suppresses the
last n rows of eq. (10). In the second scenario (fig. 7b), six clouds were positioned
around the center of the trajectory. In order to obtain realistic estimation results, the
six cloud bases were normally distributed around a mean z̄c =−1500m with a stan-
dard deviation of σzc = 25m. Subsequently, the cloud base altitude of cloud number
one was biased by 100m to simulate strong variations. Note that cloud number one
has precisely the same horizontal position as the cloud in the first scenario.
The parameters of the camera model eq. (8) C, i.e. the focal length, field of view and
image size were selected to represent the performance of a small low-cost camera.
A constant and unbiased measurement noise v with a standard deviation of 5% of
the image size was used to simulate uncertainties evoked by the image detection
algorithm. Where the primary scaling parameter α which determines the spread of
the sigma points was set to 1, the secondary scaling parameter β was set to 2 which
according to [16] is the optimum value for Gaussian distributions. The tertiary pa-
rameter κ was set to a commonly-used value of 0. The process noise covariance Q
was chosen to be 0.01(m/s)2. The initial cloud base z0 can for example be obtained
as a cloud ceiling provided in METAR/TAF information. In this simulation it was
set to a value of z0 =−1200m with a significant uncertainty σz0 = 600m. The gate
g in the data association was set to 9.
As discussed in section 2, the soft state constraint enables faster convergence of
cloud position estimates. This is because, even if a cloud is out of the field of view,
its position estimate can be corrected based on the state constraint measurement (last
n rows in eq. (10)). However, the position estimation will be biased and/or the error
interval will be predicted too tight, if the assumption of a uniform cloud base does
not hold for a particular cloud, i.e. the state constraint is biased. A too small covari-
ance R1 will reduce the slackness of the constraint and cause a fast overconfidence
during estimation. Therfore, the parameter R1 has to be selected carefully depend-
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ing on cloud base variations that can be encountered in the real world. That being
said, R1 was tuned with the second scenario such that the filter ensures estimation
confidence for clouds with an altitude variation of up to 100m. This value roughly
corresponds to the maximum the main author has observed during various cross-
country soaring flights and has been confirmed by a meteorologist. The procedure
lead to a parameter value of R1 = 750000m2.

4.2 Estimation performance

The position estimate of the first cloud is considered to compare the filter’s perfor-
mance in terms of confidence and convergence for the unconstrained (noted unc. in
fig. 8) and c. for the constrained formulation as depicted in fig. 8. Recall that this
corresponds to the estimation performances of the two defined scenarios. While the
dark envelope and the dashed line denote the 3σ envelope and the position error for
the unconstrained case, the light envelope and the solid line correspond to the 3σ

envelope and the estimation error when considering the state constraint.
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As expected, both regarding rate of convergence and the error, the SCSPKF out-
performs the standard SPKF. In all three cases, the upper bound of the position error
is reliably predicted. The huge uncertainty of the initial cloud base impacts the fil-
ter’s transient behavior which can be seen in terms of estimation overshoots in the
beginning of the estimation process. Also, the settling time for the unconstrained
filter process is extended since each cloud is visible only for approximately 35%
of the estimation duration. Periods with no measurements can be seen at the long
horizontal segments within the graph. In contrast, for the constrained formulation a
significant reduction of the state’s settling time is obtained due to the measurement
augmentation.
Estimation degradation is expected whenever the vertical position of a cloud strongly
varies from the mean and its position update is only performed using augmented
measurements. This is particularly the case for clouds that lie behind the camera’s
field of view when flying towards the next waypoint in cross-country soaring. How-
ever, this degradation is not predominant, since clouds that lie behind the vehicle
have no impact on the future path.

5 Perspectives

This paper presented a method providing functionality to the remote sensing of ther-
mal updrafts. The information of both state and covariance estimation should be
taken into account in path planning algorithms to enable more efficient autonomous
cross-country soaring.
In general, the problem of autonomous cross-country soaring can be stated as a
waypoint navigation (from A to B) as illustrated in fig. 9.
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Fig. 9: Path planning problem
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In this example, an unpowered UAV glider has to fly from waypoint A to way-
point B given position estimates for the two thermal updrafts T1 and T2, where the
true thermal centers are supposed to lie somewhere within the 2D error ellipses of
the estimates. The mission starts at waypoint A where the UAV is scanning the sky
for thermals while climbing in a thermal before planning the path to the next in-
termediate or global target B. The ability of the glider to perform this mission in
minimum time depends on three factors. Firstly, the vehicle’s performance in terms
of its glide ratio i.e. its capacity to transform potential energy into travelled dis-
tance. Secondly, the flight control’s performance to center around a given thermal.
Thirdly and most importantly meteorological conditions and the pilot’s capacity to
read them i.e. to locate far away thermals in order to plan the most efficient path.
If the direct path from A to B is not feasible due to the vehicle’s limited glide ratio,
it has to fly a detour via one of the two thermals to regain altitude. The total flight
time for the two path options is given by

(A→ T1→ B) : tAB = tAT1 + ten,T1 + tth,T1︸ ︷︷ ︸
time spent at T1

+tT1B

(A→ T2→ B) : tAB = tAT2 + ten,T2 + tth,T2︸ ︷︷ ︸
time spent at T2

+tT2B

(30)

where the encounter time ten is the time to hit the thermal while searching within the
error ellipse, and the thermal time tth is the time spent in the thermal updraft dur-
ing climb. The latter depends on the initial altitude at which the vehicle enters the
thermal and the strength of the updraft as well as the cloud base. The vehicle is sup-
posed to leave the thermal once the cloud base is reached. Assuming equal thermal
strength, the two routes seem to be on par regarding the flight time. However, the
larger position uncertainty of T1 might require more time to encounter the thermal
using some search pattern whose size is determined by the error ellipse. That being
said, the uncertainty of the thermal position impacts the flight time. According to
Allen’s research on modeling thermal updrafts for autonomous UAV soaring [4],
the thermal radius rth as illustrated in fig. 9 can be predicted when knowing zc and
the altitude z at which the vehicle reaches the thermal

rth = 0.5
[

0.203(
z
zc
)

1
3 (1−0.25

z
zc
)zc

]
(31)

Whenever the thermal radius rth is larger than the half of the semi minor b belong-
ing to the 2D error ellipse (see T̂1 in fig. 9), the maximum time to encounter the
thermal can be predicted by the speed V (which is considered to be constant during
operation) and the semi major a

ten =
a
V

(32)

Otherwise, a systematic search pattern has to be flown within the error ellipse. Re-
gardless of the pattern’s shape, the maximum time to encounter the thermal is
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ten =
lp

V
where lp = lp(PT , p) (33)

where the pattern length lp depends on the uncertainty PT as well as on the shape of
the pattern p.
These upper bounds on te render it possible to incorporate the uncertainty of thermal
position estimates into the cost function thus reducing the total flight time.
Future work will concentrate on two fields. First, the design of path planning al-
gorithms for autonomous cross-country soaring including crucial meteorological
aspects as thermal updrafts and wind. Second, the design of image processing algo-
rithms capable of deducing information about thermals given images of clouds. This
includes for instance thermal strength prediction based on the color and contrast of
the related cumulus as well as cloud size and shape. If those visible features can
be detected, and thermal strength can fairly be predicted, even more efficient path
planning becomes possible by taking into account this additional information.

6 Conclusion

In this paper, a SCSPKF was developed for remotely sensing thermal updrafts indi-
cated by cumulus clouds in autonomous soaring. Two design efforts were focused
on:

• Including the state constraint of a uniform cumulus cloud base for faster conver-
gence

• Maintaining estimation consistency and providing a confident estimate of the
uncertainty

Simulation results clearly demonstrate the benefits of the constrained filter formula-
tion in terms of convergence rate. The filter still provides consistent estimation for
strong model deviations with biases in the cumulus cloud base of up to 100m.
Finally, a perspective for a new path planning approach for autonomous cross-
country soaring was presented considering the uncertainty of thermal position esti-
mates to augment the efficiency of future UAV operations.
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