
Experimental Wind Field Estimation
and Aircraft Identification

Jean-Philippe Condomines∗, Murat Bronz∗, Gautier Hattenberger∗, Jean-François Erdelyi
ENAC; UAV Lab ; 7 avenue Edouard-Belin, F-31055 Toulouse, France
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ABSTRACT

The presented work is focusing on the wind
estimation and airframe identification based on
real flight experiments as part of the SkyScanner
project. The overall objective of this project is
to estimate the local wind field in order to study
the formation of cumulus-type clouds with a fleet
of autonomous mini-UAVs involving many as-
pects including flight control and energy harvest-
ing. For this purpose, a small UAV has been
equipped with airspeed and angle of attack sen-
sors. Flight data are recorded on-board at high
speed for post-analyses. An approach based on
Unscented Kalman Filter (UKF) is proposed for
nonlinear wind estimation. As a first result, wind
updraft estimation is highlighted by exploiting
recorded flight test data. In addition to this, a
motor test bench has been developed in order to
establish a model of the propulsion system from
wind tunnel experiments. It will be combined
with a classical aerodynamic model for airframe
identification Preliminary flight results are pre-
sented.

1 INTRODUCTION

Small Unmanned Aerial Vehicle (UAV) are now widely
used for atmospheric and meteorological researches [1, 2].
They can easily carry compact sensors, but when it comes to
more important payloads like particles and aerosols detectors,
the remaining available weight can be limited, unless a bigger
airframe is chosen. An important parameter for atmospheric
studies, but also for long endurance autonomous flights [3], is
the observation of the local wind field. Such information can
be used for autonomous soaring for instance. The SkyScan-
ner1 project aims at studying and experimenting a fleet of
coordinated Mini UAVs which adaptively samples cumulus-
type clouds. This is involving many aspects including flight
control and energy harvesting. The main tackled challenges
are a better understanding of the clouds micro-physics, small
airframe optimization, and optimized fleet control.

The presented work, as part of the SkyScanner project, is
focusing on the wind estimation and airframe identification
∗firstname.lastname@enac.fr

1 http://www.laas.fr/projects/skyscanner

based on real flight experiments. For this purpose, a small
UAV has been equipped with airspeed and angle of attack
sensors. Flight data are recorded on-board at high speed for
post-analyses. Several solutions have been used for wind es-
timation [4, 5, 6] and system identification [7, 8]. The pro-
posed solution will be based on Unscented Kalman Filter
(UKF) [9, 10], widely used in its square-root version form
[11, 12, 13].

In addition to the flight data, a model of the propulsion
system is required in order to evaluate the propulsive power
of the plane based on the flight speed and the consumed elec-
trical power directly measured on the battery. A motor test
bench have been designed for this purpose, with an automatic
recording sequence controlled by a computer.

In the sequel, first section presents the models and the
problem formulation. Then, the theoretical basis of the esti-
mation and identification algorithms are presented. The next
section details the experimental setup and the instruments em-
bedded on the UAV. To conclude, the final part gathers all the
motor test bench and the experimental results obtained from
the flights.

2 PROBLEM FORMULATION

2.1 Wind field
Small UAVs are very sensitive to relative high wind gusts

because of their size, hence satisfying the real-life demands
becomes difficult. In general wind speed is assumed to be a
spatially and temporally varying vector field s.t.
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where the superscript i denotes components expressed in

the inertial frame. A small vehicle flying through this field is
influenced by three components of the wind field and gradi-
ents of the wind field such that :
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where the subscript ζ denotes the time rate of change of
wind velocity at the point (x,y,z). Three component ẋ, ẏ and
ż represent the velocity of the vehicle with respect to inertial



frame and ∇w(x,y,z) is the gradient of the wind field. As-
suming a constant wind field as seen by the vehicle, the last
term of Eq.1 becomes to zero, however this approximation
is only applicable when vehicle velocity is large compared to
the “point” rates of change of wind velocity (e.g, wing span is
significantly larger than tail height, so vertical gradient of the
lateral airmass velocity has negligible effect on roll rate). This
paper considers the simultaneous nonlinear state estimation
of aircraft body-axis velocity component and wind velocity
component in the North-East-Down (NED) inertial reference
frame using this assumption.

2.2 Vehicle Dynamics and Kinematics
In order to tackle a wide range of applications, various im-

plementations of flight dynamics models, in terms of assump-
tions and numerical techniques, therefore exist. To overcome
the difficulty for an UAV to derive a reliable representative
aerodynamic model, they are commonly represented using a
6 Degrees of Freedom (DoF) kinematic model (3 DoF corre-
spond to the translational motion (VN ,VE ,VD) and the 3 re-
maining DoF to the rotational motion (ϕ,θ ,ψ)).
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ẑb

ŷb
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ẑi

O

r

va

q−1 ∗ . . . ∗ q

Fig. 1: Reference frames.

Assuming a flat non-rotating Earth the flying rigid body
motion in turbulent conditions can be located at r with ve-
locity vi having components VN ,VE ,VD in an inertial frame
I, where x̂i,ŷi and ẑi define unit vector (see figure 1). Using
a standard body-fixed coordinate frame with airmass-relative
velocity va having components u,v,w in the body x̂b, ŷb, ẑb di-
rections, respectively, the acceleration of the aircraft in the
inertial frame can be mathematically described s.t:

r̈ = v̇i + ẇ

Developing inertial velocity

r̈ =
d
dt

va +ω×va +
d
dt

w

Hence

d
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Using angular velocity ω =
(

p q r
)T and aerodynam-

ics forces X,Y,Z depending on functions of trust T, drag D
and lift L expressed in the body x,y,z directions, the funda-
mental principle of dynamics now becomes :
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In Eq.3, the latter quantity d
dt w is expressed in the inertial

frame and can be converted in the body frame through a Di-
rection Cosine Matrix (DCM) Ra

i which is defined by succes-
sive rotation of the roll, pitch and yaw angles of the aircraft
s.t :

Ra
i =(Ri

a)
T =

 cθcψ cθsψ −sθ

sϕsθcψ− cϕsψ sϕsθsψ + cϕcψ sϕcθ

cϕsθcψ + sϕsψ cϕsθsψ− sϕcψ cϕcθ


In the next sections, Galilean transformations will be made
by using a standard quaternionial form, i.e, Ra

i · r = q−1 ∗ r∗
q, Ri

a · r = q ∗ r ∗ q−1. Note that symbol ∗ corresponds to
the quaternion product. Using the aforementioned standard
quaternional form provides at the same time :

• a global parametrization;

• avoids the mathematical singularities inherent to Euler
angles;

• and is convenient for calculations and simulations.

For more details about formulas used on quaternion in this
paper, see Appendix A. Finally, the state dynamics for the
body-axis velocity states are given by

u̇ =
X
m
−gsinθ −qw+ rv− ẇix cosθ cosψ

−ẇiy cosθ sinψ + ẇiz sinθ



v̇ =
Y
m
−gsinϕ cosθ + pw− ru

− ẇix(sinϕ sinθ cosψ− cosϕ sinψ)

− ẇiy(sinϕ sinθ sinψ + cosϕ cosψ)

− ẇiz sinϕ cosθ

ẇ =
Z
m
−gcosϕ cosθ +qu− pv

− ẇix(cosϕ sinθ cosψ + sinϕ sinψ)
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− ẇiz cosϕ cosθ

with ẇi(·) denotes the rate of change of a component of the
wind velocity expressed in the inertial frame.

2.3 Aerodynamic and propulsion
Aerodynamic lift and drag forces in stability axes can be

written as follow:
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where α is the angle of attack, β the side-slip angle and
δsfc the elevator deflection. Since we are mostly interested
in steady flight conditions, close to straight line without side-
slip, and that the effect of the elevator on lift and drag forces is
small, the equations can be reduced for performance analysis
to:

L =
1
2
.ρ.V 2

a .Sref(CL0 +CLα .α) (7)

D =
1
2
.ρ.V 2

a .Sref(CD0 +CDk.C2
L) (8)

In steady level flight, the weight is equilibrated by the lift,
and the drag by the thrust. As a first approximation, the thrust,
or more precisely the propulsive power P (the product of the
thrust T by the airspeed Va) can be expressed as:

P = η .Pelec (9)

where, Pelec is the electrical power drown from the batteries
and η is an efficiency coefficient, function of the advance
ratio, the propeller and motor characteristics, the Reynolds
number and the electrical efficiency of the global propulsive
system.

A more complex propulsion model [14], with a first order
DC motor model, might be used in later studies in order to
define an analytic description of η .

3 WIND FIELD ESTIMATION AND AIRCRAFT MODEL
IDENTIFICATION

3.1 Wind field estimation
This problem considers simultaneous estimation of air-

craft body-axis velocity (u,v,w) and wind velocity compo-
nents (wix,wiy,wiz). Both process and measurement equa-
tions are not dependent on aerodynamic force described
above. The estimation is performed through a fusion algo-
rithm of low-cost inertial sensors used for UAV navigation
[12]. The navigation quality is limited by inertial sensors per-
formance specifies by the size, power and cost constraints
of the UAV. To recover navigation accuracy using low-cost
aided-INS (Inertial Navigation System), it is necessary to
use, if possible, additional instruments (e.g. magnetometers,
barometer, which are used to improve the heading and posi-
tion accuracies) and/or nonlinear estimation algorithms to im-
prove the flight handling qualities of the aerial vehicle. The
nonlinear state estimation makes use of 2 triaxial sensors plus
both GPS and Pitot tube sensor units which deliver a total of
10 scalar measurement signals:

• 3 gyroscopes providing a measurement of the instanta-
neous angular velocity vector denoted by ωm ∈ R3 s.t.
ωm = [pm, qm, rm]

T ;

• 3 accelerometers giving a measurement of the spe-
cific acceleration denoted by am ∈ R3 s.t. am =
[amx, amy, amz]

T ;

• 1 GPS unit measuring both position (not used) and
velocity vectors denoted by yV = vi ∈ R3 s.t. vector
vi = [VN ,VE ,VD]

T is used in the observation equations;

• 1 pitot tube sensor providing a scalar measurement of
the air data denoted by yVa.

All the sensors embedded are low-cost, and therefore have
imperfections. The major error sources in the navigation sys-
tem are due to: - all of the disturbances (noises) that affect all
the instruments; - the potential incorrect navigation system
initialization (e.g. on magnetometers or barometric sensor);
- and the inadequacy between the real local Earth’s gravity
value and the one used for computation. The largest error is
usually a bias instability (expressed respectively in deg/hr for
gyros and µg for the accelerometers).



All these measurements are obviously corrupted by addi-
tive noises for which it appears reasonable to assimilate their
stochastic properties to the ones of Gaussian processes. Their
covariances have been identified in [15] from logged sensor
data using the Allan variance method [16]. Moreover, these
errors correspond to the random nature of wind evolution nec-
essary in Eq.2.

Using these values, the state space representation corre-
sponding to Ms can be described in a compact form such as:

ẋ = f (x,u) and y = h(x,u)

where: x = [u,v,w,wix,wiy,wiz]
T ,u = [ωT

m ,aT
m]

T and y =
[yT

V ,yVa]
T are the state, input and output vectors respectively.

Ms



u̇ = amx−gsinθ + rm · v−qm ·w
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ẇix = 0 (process)
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Obviously, to implement these equation in a discrete-time
filter, a first order discretization is used [17].{

xk = xk−1 +Ts. fc(xk−1,uk−1)+νk

yk = h(xk)+µk

where f is the discrete-time state transition, h is the nonlinear
observation function which depend on DCM through quater-
nion and Ts is the sampling time of the system. ν ,µ are the
zero-mean Gaussian process noise vectors with covariance
matrix, Q, R. Using these relationships, the angle of attack
and side-slip are calculated from the body axis velocity com-
ponents by

α = tan−1
(w

u

)
β = sin−1

( v√
u2 + v2 +w2

)
Since the measurement equation formulation contains non-
linear function, a nonlinear state estimation technique such
as EKF [18] or UKF is required. The SR-UKF (Square-Root
UKF) was selected for this work due to its ease of implemen-
tation and outperforms relative to EKF. Identification of both

sigma points
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and covariance

mean
SPKF

SPKF
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transformed
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Fig. 2: Sigma point approach.

aerodynamic coefficient CL and CD can be lead by changing
the process equation which is ongoing work.

This study uses flight data collected with a small UAV
which is susceptible to perform some trajectories which leads
to reduce maneuverability and so unobservability on two
components of wind speed. Wind speed unobservability
points out a particular behavior of UKF which is shown by a
slow drift on state vector due to using sigmas-points for pre-
diction and correction steps. Indeed, in case of strong nonlin-
earity, predictions are obtained by weighting the sigma-point
predictions whose results differs from the direct calculation of
the prediction from the estimated state (see figure 2). Firstly,
effects can be observed in the calculation of the predicted
state where the successive accumulation of these differences
can lead to significant drifts, and secondly, in the correction
of the state from the prediction measure. These effects can be
eliminated by performing the calculation of prediction of the
state and measures from the estimated average state, while
retaining the sigma points for the calculation of covariance.

3.2 Aircraft model identification
The aircraft model identification is using the equation

from section 2.3 during steady flight phases, when the air-
speed is almost constant, thus the acceleration is zero. As a
results, lift equals weight and thrust equals drag. Since the
propulsion model was still under investigation at the time
of the first flight experiments, the methodology have been
adapted in order to estimate the drag. The procedure de-
scribed in [19] have been used. It consists of performing sev-
eral gliding phases at different airspeed and angle of attack in
order to estimate the drag from the glide flight path γ:

tanγ =−D
L

=−CD

CL
(10)

The identification of the lift coefficient is done using
Eq. 7. For each flight phase, the airspeed Va and the angle
of attack α are averaged. Then a linear regression is used to
estimate the two parameters CL0 and CLα .

In order to identify the drag coefficient, only the gliding
phases are considered as stated above and equations 8 and 10
are used. Three parameters are then needed, the lift coeffi-
cient and the angle of attack that are already computed, and
the flight path angle γ . Since this angle can’t be directly mea-
sured, two methods have been evaluated. The first method is
using an angle of attack installed on the UAV and the pitch



angle θ estimated using the IMU sensor. With the kinematic
relation θ = α + γ , the path angle is estimated by averaging
over the complete phase. The second method is using the re-
lation that the lift over drag ratio is also the ratio between the
horizontal distance and altitude lost during a glide. The main
constraint is that the experiment needs to be done with almost
no wind so that the ground and aerodynamic flight paths are
the same. After estimating the parameter γ , the drag coeffi-
cient is computed with Eq. 10, and second order polynomial
regression is done between CD and α in order to estimate CD0,
CDk.

Experimental results are presented in section 5.1 and they
are showing a good correlation between the two methods.

For a futur work, the UKF estimation algorithm presented
at the previous section will be applied for these parameters
identification.

4 EXPERIMENTAL SETUP

4.1 UAV instrumentation
As mention above, a mini UAV has been equipped with

several sensors in order to make in-flight measurements. The
frame itself is a commercial foam plane Solius from Multi-
plex2, a 2.16 meter wingspan motorized glider. The autopi-
lot is an Apogee3 board using the Paparazzi system [20, 21],
which includes a SD card slot for high speed logging.

It would have been possible to connect all the required
sensors to the main autopilot, but due to electrical problems
with long cables, it has been decided to split the Data Acqui-
sition System (referred as DAQ board) from the flight control
(referred as AP board). Hence, a second Apogee board was
used to record the sensors, which is possible since there is no
feedback of the wind estimation to the flight control at this
stage of the project. The DAQ board is already equipped with
3-axis gyroscopes and accelerometers, and a low resolution
barometer. The INS filter [13] used to estimate the position
and orientation of the plane also requires a magnetometer and
a GPS, that have been externally mounted.

The SkyScanner project aims at studying the formation
of clouds. The meteorological parameters will be measured
using a dedicated board Meteo-Stick. This board has high res-
olution absolute pressure sensor, differential pressure sensor,
temperature sensor and humidity sensor. For this study, only
the differential pressure sensor was used connected to a Pitot
tube in order to measure the airspeed of the plane.

The figure 3 is showing the final integration of the mea-
surement system, with the DAQ and Meteo-Stick stacked, the
GPS and the magnetometer at the back.

The main sensor addition is an angle of attack sensor,
mounted on the wing close to the Pitot tube. This sensor is
made of a US DIGITAL MA3-P12-125-B4 angular sensor.
It is an absolute position sensor using hall effect with 12-bit

2 http://www.multiplex-rc.de
3 http://wiki.paparazziuav.org/wiki/Apogee/v1.00
4 http://www.usdigital.com/products/encoders/absolute/rotary/shaft/ma3

Fig. 3: Integration of the data acquisition system in the nose
of the UAV.

internal converter giving less than 0.09◦ of resolution with a
very low noise. The vane has been 3D-printed and mounted
directly on the shaft of the sensor. The figure 4 shows the
final integration of this two sensors on the wing. The piece
holding them has also been made with a 3D printer.

Fig. 4: Integration of the Pitot tube and the angle of attack
sensor on the leading edge of the wing.

The final setup for the SkyScanner project will also in-
clude a current sensor in order to measure the electrical power
drown by the motor that will be used in the aerodynamic
and propulsion models, and some additional scientific sen-
sors dedicated to the atmospheric research part, such as Liq-
uid Water Content sensors, not directly related to the wind
estimation.

4.2 Motor test bench

In order to integrate the propulsion model to the estima-
tion process, it is necessary to establish the relation between
the electrical current consumed by the motor, the rotation
speed, the flight speed and the resulting propulsion forces and
torque generated. Since it is not possible to embedded the
necessary sensors to estimate this late parameters in flight,
a motor test bench provides the propulsion model based on
wind tunnel experiments.

The figure 5 shows the bench. Two force sensors are
used to measure the propulsive force and the motor torque.
The bench itself is an assembly of 3D-printed pieces and alu-
minum bars.



Fig. 5: Final version of motor test bench.

In addition to the mechanical mounting of the motor and
its propeller, an electronic board is required for the sensors’
signal conditioning. Finally, a myRIO data acquisition board
from National Instruments connects them to the lab computer.
A graphical interface developed using LabView allows to con-
trol the motor PWM command and synchronize all the mea-
surements, making the process almost fully automated (the
wind tunnel speed is currently control by hand). The figure 6
presents the global architecture and wiring of the motor test
bench.

Fig. 6: Overview of the motor test bench experimental setup.

5 EXPERIMENTAL RESULTS

5.1 Flight tests
A few flight tests using the experimental setup described

in the previous section have already been conducted (see fig-

ure 7).

Fig. 7: Solius glider fully equipped for experimental flight.

Some preliminary results have been analyzed in order to
aces the quality of the measurements, especially the angle of
attack sensor since the Meteo-Sick sensors have already been
validated in a previous project. The figure 8 shows the good
correlation between the variation of the airspeed and the angle
of attack (one increasing when the other decrease). Note that
study uses angle of attack data collected with a constant offset
which can be removed from raw data.
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Fig. 8: Comparison of the angle of attack (red, plain line) and
the airspeed (green, dashed line).

Flight plans In order to perform a correct estimation of
the wind or the aerodynamic model, it is necessary to per-
form appropriate flight patterns. Concerning the wind esti-
mation, observability is achieved by changing the flight di-
rection. Hence, the chosen flight patterns are circles or small
variation along a given segment. Figure 9 shows the horizon-
tal wind field estimation along the aircraft trajectory. Further
flight data analysis will be conducted in order to correctly
tune the algorithm. The extraction of the vertical component
of the wind will be possible by including the angle of attack
measurements and not only the airspeed norm as it is cur-
rently the case.

An other type of flight pattern have been used in order
to estimate the lift and drag coefficients as a function of the
angle of attack. Several gliding phases are done at different



Fig. 9: Estimation of a wind updraft (red) during a gliding
phase with confidence bounds (green).

airspeed following the same protocol than [19]. The figure 10
is showing four of these flight phases extracted from the com-
plete experimental flight.

From the complete flight, four gliding phases and three
cruise level flight phases have been selected for their stable
airspeed and away from stall point. The figure 11 is a plot of
the lift coefficient CL over the angle of attack α , using both
cruise and gliding phases. Figure 12 shows the drag coeffi-
cient CD over α computed with the two methods as described
section 3.2. Both methods are giving very similar results,
which is validating the identification methodology.

The table 1 summarizes the estimated aerodynamic coef-
ficients (with α in degree):

5.2 Motors analysis

The motor test bench have been placed in a wind tunnel
and the parameters have been recorded at different airspeed
from 0 (static thrust) up to 22 m/s. The resulting thrust versus
RPM is shown on figure 13. We can see that the motor is
generating a fair amount of static thrust (up to 10 N for a
1.5 kg plane) allowing easy take-off. But at higher speed,

Fig. 10: Different gliding flight path.

CL0 CLα

0.2831 0.04119

CD0 CDk
method 1 0.01848 0.2034
method 2 0.01839 0.1912

Tab. 1: Aerodynamic coefficients identification for lift and
drag.
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Fig. 11: Lift coefficient versus angle of attack.

the motor is not generating positive thrust at low RPM (at 22
m/s it needs at least 80% of throttle) since the glider was not
originally designed for high speed.

The main interest for improving the wind estimation and
aircraft identification is to find a simple relation between the
propulsive power and a measurable parameter. The figure 14
is showing this propulsive power versus the electrical power
drown from the battery. This later value can be measured on-
board from voltage and current sensors. As we can see, for
the useful flight speeds from 10 to 15 m/s, their is a simple
linear dependency of these two parameters.
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6 CONCLUSION

This article has presented the theoretical basis of a wind
estimation algorithm based on Unscented Kalman Filter. Ex-
perimental flights have already been conducted in order to
get real data. A foam glider have been equipped with air-
speed and angle of attack sensors in addition to the tradi-
tional GPS+IMU units needed for the autonomous flight. The
propulsion model have been identified using a motor test
bench in a wind tunnel. Further developments will integrate
this model to the aircraft aerodynamic identification process
and to the wind estimation.

This work is only a first step in a larger project aiming
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at conducting atmospheric research using a fleet of coopera-
tive UAVs. The estimation of the local wind field is therefore
an important part of the project, but can be reused in many
other applications such as long endurance flights based on
autonomous soaring.
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APPENDIX A: QUATERNIONS AND ROTATIONS

An unit quaternion provide a convenient mathematical
notation and a global parametrization for representing orien-
tation and rotation of a rigid body in three dimensions. In-
deed, for any unit quaternion

q = q0 +q = cos
θ

2
+usin

θ

2

and for any vector p ∈ R3 the action of the operator

q−1 ∗p∗q = Rq ·p

is associated to a rotation matrix Rq ∈ S0(3) which is a rota-
tion of the coordinate frame about axis u = q

||q|| through an
angle θ .
Note that a vector p ∈ R3 can be viewed as a pure quaternion

whose real part is zero
(

0
p

)
. Thus, when the real part is a

scalar denoted p0 ∈ R the quaternion p is given as :

p =

(
p0
p

)


