Deliberation with
Refinement

Methods

Malik Ghallab, Dana Nau, Paolo Traverso
Automated Planning and Acting
Cambridge University Press

IJCAI 2016 Tutorial
New York, July 11,2016

Last updated 7/11/16

Motivation

Deliberation 1s hierarchically organized
» At high levels, the actions are abstract

> At lower levels, more detail

Refine abstract actions into ways

of carrying out those actions
» How?

In some cases, can use
predictive models

» Precondition-effect actions

» State-space planning

In others, need
operational models

» Refinement methods

identify

type
of

door

respond to user requests

v

bring 07 to room2

— e - - - - = - - - e G e G G e e G G e G e e e e e e ey

go to | | navigate | | fetch | | navigate | | deliver
hallway| |to room1|| o7 | |toroom2 o7
AR AT
I LN] y
[coe
|
T
 |move to door open door| |get out| |close door
ungrasp
mlove grasp| [turn maintain| | back
close
o | knob] knob| [pun| [pull
knob monitor| |monitor

Outline

1. Representation
a. State variables, commands, refinement methods
b. Example
2. Acting
a. Rae (Refinement Acting Engine)
b. Example
c. Extensions
3. Planning
a. Motivation and basic ideas
b. Deterministic action models
c. SeRPE (Sequential Refinement Planning Engine)
4. Using Planning in Acting
a. Techniques

b. Caveats

la. State-Variable Representation

e State-variable representation m,
® Objects: Robots = {rbt}, Containers = {cl, c2,c3, ...}, /
Locations = {loc0, loc1, loc2, ...} oo
® State variables: syntactic terms cl/
loc2

to which we can assign values
> loc(r) € Locations
> load(r) € Containers U {nil} /
> pos(c) € Locations U Robots U {unknown} locl
> view(r,l) € {T, F} — whether robot r has looked at location /
e rcan only see what’s at its current location —/%l
® State: assign a value to each state variable (g ot 0“7/

» {loc(rbt)=loc0, pos(cl)=loc2, pos(c3)=loc4, locO
pos(c2) =unknown, ...}

Details: Automated Planning and Acting, Sections 2.1 and 3.1.1

Commands

‘ tasks

e Command.: primitive function that
the execution platform can perform

> take(r,o0,l):

robot r takes object o at location / commands events
v
> put(ro,l): . Execution Platform
r puts o at location / 5
> perceive(r,]): —
robot perceives what objects are at / Environment

e 7 can only perceive what’s at its
current location

open door

Tasks and Methods

Task: an activity for the
actor to perform

ungrasp

move

identify e
For each task, a set of e || TOVE | |grasp| [qurm | [RAIRtain | back
yp close | |1nob Knob
refinement methods of to ob| |pull pull
) door . -
Operational models: knob monitor| (monitor

> tell how to perform the task

» don’t predict what the effects
will be e May contain

» assignment statements
» control constructs
e if-then-else, while,
loop, etc.
> tasks to perform

» commands to the
execution platform

method-name(arg,, ..., arg;)
task:* task-identifier
pre: fest
body: a program

“Can also have methods for events, goals

open door

1b. Example: Opening a Door

e Many different methods,

depending on what kind T A |move
of door type mlOVe grasp| [turn maintain| | back
L. . close | knob | {knob
> Sliding or hinged? of to pull] — |pull
door_J| knob monitor| |monitor

Opening a Door

e Many different methods,
depending on what kind
of door

» Sliding or hinged?
» Hinge on left or right?

identify

type
of

door

move
close

to
knob

grasp
knob

open door

turn
knob

maintain

move
back

pull

pull

monitor

monitor

Opening a Door

e Many different methods,
depending on what kind
of door

» Sliding or hinged?
» Hinge on left or right?

» Open toward or away?

identify

type
of

door

move
close

to
knob

grasp
knob

open door

turn
knob

maintain

move
back

pull

pull

monitor

monitor

Opening a Door

e Many different methods,
depending on what kind
of door

» Sliding or hinged?
» Hinge on left or right?

» Open toward or away?
» Knob, lever, push bar, ...

identify

type
of

door

open door

move

move

maintain

back

grasp| turn

close knob | [knob
to

pull

pull

knob

monitor

monitor

© &~

10

open door

Opening a Door

e Many different methods,

depending on what kind T move
of door) move | [oragp| [ogpq | [M2INAIN] | back
YPC |l close | [nob knob
> Sliding or hinged? dOf to pull] |pull
. : OOr' || knob : :
Hinge on left or right? monitor| |monitor

>
» Open toward or away? " -
» Knob, lever, push bar, @ @ﬁ

pull handle, push plate, ...

11

open door

Opening a Door

e Many different methods,

depending on what kind T move
of door) move | [oragp| [ogpq | [M2INAIN] | back
YPC |l close | [nob knob
> Sliding or hinged? dOf to pull] |pull
. : OOr' || knob : :
Hinge on left or right? monitor| |monitor

>

» Open toward or away? / -

» Knob, lever, push bar, @ @ﬁ
pull handle, push plate,
something else?

12

open door

identify
type
of
door

move
grasp| turn

close knob | |knob
to

knob

m-opendoor(r,d,/ h)

Opening a Door

e What kind:
» Hinged on left, opens

maintain

move

back

pull

pull

ungrasp| ~ toward us, lever handle

m1l-unlatch(r,d,/,0)
task: unlatch(r,d)

monitor

monitor

pre: loc(7,/) A toward-side(/,d)

task: opendoor(r,d)

pre: loc(r) =1 A adjacent(/,d)

A handle(d)

body:

while —-reachable(r,/) do
move-close(r, /)
monitor-status(r,d)

if door-status(d)=<losed then

unlatch(r,d)
throw-wide(r,d)

end-monitor-status(r,d)

A side(d,left) A type(d,rotate) A handle(d,0)
body: grasp(7,0)

turn(r,0,alphal)

pull(7,vall)

if door-status(d)=cracked then ungrasp(r,0)

else fail

m1-throw-wide(7d,/,0)
task: throw-wide(r,d)
pre: loc(z]) A toward-side(/,d)

A side(d,left) A type(d,rotate)
/ A handle(d,0) A door-status(d)=cracked
body: grasp(70)

pull(r,vall)

move-by(r,val2)
13

Outline

1. Representation
a. State variables, commands, refinement methods
b. Example
2. Acting
a. Rae (Refinement Acting Engine)
b. Example
c. Extensions
3. Planning
a. Motivation and basic ideas
b. Deterministic action models
c. SeRPE (Sequential Refinement Planning Engine)
4. Using Planning in Acting
a. Techniques

b. Caveats

14

2a. Rae (Refinement Acting Engine)

e Based on OpenPRS | tasks
A4

» Programming language,
open-source robotics software @

» Deployed in many applications 3
commands events
e Input: external tasks, events, current state Execution Platform
e Output: commands to execution platform |
Environment

e Perform tasks/events in parallel

» Purely reactive, no lookahead

e For each task/event, a refinement stack
» current path in Rae’s search tree for the task/event

® Agenda = {all current refinement stacks}

Details: Automated Planning and Acting, Section 3.2

15

Rae (Refinement Acting Engine)

e loop:
> 1f new external tasks/events then

add them to Agenda Y
commands events

A 4

| tasks
v

> Progress each stack in Agenda

Execution Platform

Rae(M)
Agenda < @ e ——
loop Environment

until the input stream of external tasks and events is empty do
read 7 in the input stream
Candidates < Instances(M, 7, &)
if Candidates = @ then output(“failed to address” 7)
else do
arbitrarily choose m € Candidates
Agenda < Agenda U {{(7, m,nil, @))}
for each stack € Agenda do
Progress(stack)
if stack = @ then Agenda < Agenda \ {stack}

16

2b.

m-fetch(z,c)
task: fetch(zc)
pre:
body:
if pos(c) = unknown then
search(zc)
else if loc(7) = pos(c) then
take(#c,pos(c))
else do
move-to(zpos(c))
take(#c,pos(c))
m-search(r,c)
task: search(r,c)
pre: pos(c) = unknown
body:
if 3/ (view(r,/) = F) then
move-to(r,[)
perceive(/)
if pos(c) =/ then
take(r,c,0)
else search(7,c)
else fail

Example

Refinement stack:

e fetch(rl,c2)

fetch(r1,c2)

/

?

17

m-fetch(z,c)
task: fetch(zc)
pre:

body:
if pos(c) = unknown then
search(zc)
else if loc(7) = pos(c) then
take(#c,pos(c))
else do
move-to(zpos(c))
take(#c,pos(c))
m-search(r,c)
task: search(r,c)
pre: pos(c) = unknown
body:
if 3/ (view(r,/) = F) then
move-to(r,[)
perceive(/)
if pos(c) =/ then
take(r,c,0)
else search(7,c)
else fail

Example

Refinement stack:

e fetch(rl,c2): m-fetch(rl,c2)

fetch(r1,c2)

/

m-fetch(rl,c2)

18

m-fetch(z,c)
task: fetch(zc)
pre:
body:
if pos(c) = unknown then
search(zc)
else if loc(r) = pos(c) then
take(#c,pos(c))
else do
move-to(zpos(c))
take(#c,pos(c))

m-search(r,c)
task: search(r,c)
pre: pos(c) = unknown
body:
if 3/ (view(r,/) = F) then
move-to(r,[)
perceive(/)
if pos(c) =/ then
take(r,c,0)
else search(7,c)
else fail

Example

Refinement stack:

® search(rl,c2)
e fetch(rl,c2): m-fetch(rl,c2)

fetch(r1,c2)

/

m-fetch(rl,c2)

l

search(rl,c2)

./

19

m-fetch(z,c)
task: fetch(zc)
pre:
body:
if pos(c) = unknown then
search(zc)
else if loc(7) = pos(c) then
take(#c,pos(c))
else do
move-to(zpos(c))
take(#c,pos(c))

m-search(r,c)
task: search(r,c)
pre: pos(c) = unknown

body:

if 3/ (view(r,/) = F) then
move-to(r,/)
perceive(/)
if pos(c) =/ then

take(r,c,0)

else search(7,c)

else fail

Example

Refinement stack:

® search(rl,c2): m-search(rl,c2)
e fetch(rl,c2): m-fetch(rl,c2)

fetch(r1,c2)

/

m-fetch(rl,c2)

l

search(rl,c2)

-

m-search(rl,c2)

20

m-fetch(z,c)
task: fetch(zc)
pre:
body:
if pos(c) = unknown then
search(zc)
else if loc(7) = pos(c) then
take(#c,pos(c))
else do
move-to(zpos(c))
take(#c,pos(c))
m-search(r,c)
task: search(r,c)
pre: pos(c) = unknown
body:
if 3/ (view(r,/) = F) then
move-to(r,/)
perceive(/)
if pos(c) =/ then
take(r,c,0)
else search(7,c)
else fail

Example

Refinement stack:

® search(rl,c2): m-search(rl,c2)
e fetch(rl,c2): m-fetch(rl,c2)

fetch(r1,c2)

/

m-fetch(rl,c2)

l

search(rl,c2)

-

m-search(rl,c2)

move-to(rl,locl)

21

m-fetch(z,c)
task: fetch(zc)
pre:
body:
if pos(c) = unknown then
search(zc)
else if loc(7) = pos(c) then
take(#c,pos(c))
else do
move-to(zpos(c))
take(#c,pos(c))
m-search(r,c)
task: search(r,c)
pre: pos(c) = unknown
body:
if 3/ (view(r,/) = F) then
move-to(r,/)
perceive(/)
if pos(c) =/ then
take(r,c,0)
else search(7,c)
else fail

Example

Refinement stack:

® search(rl,c2): m-search(rl,c2)
e fetch(rl,c2): m-fetch(rl,c2)

fetch(r1,c2)

/

m-fetch(rl,c2)

l

search(rl,c2)

-

m-search(rl,c2)

7

move-to(rl,locl)

perceive(locl)

22

m-fetch(z,c)
task: fetch(zc)

pre:
body:

if pos(c) = unknown then

search(zc)

else if loc(7) = pos(c) then

take(#c,pos(c))
else do
move-to(zpos(c))
take(#c,pos(c))
m-search(r,c)
task: search(r,c)
pre: pos(c) = unknown
body:
if 3/ (view(r,/) = F) then
move-to(r,/)
pereeivelD
if pos(c) =/ then
take(r,c,0)
else search(7,c)
else fail

Example

Refinement stack:

® search(rl,c2): m-search(rl,c2)
e fetch(rl,c2): m-fetch(rl,c2)

fetch(r1,c2)

/

m-fetch(rl,c2)

l

search(rl,c2)

-

m-search(rl,c2)

7

move-to(rl,locl)

nrrni\lr\llnt"] \

P_I U\-IV\—\I\J\;-I-

sensor failure

23

Example

m-fetch(z,c)
task: fetch(zc)

I];rea: Refinement stack: fetch(r1,c2)
ody:
if pos(c) = unknown then o SEEEiLe) /
search(ze) e fetch(rl,c2): m-fetch(rl,c2) m-fetch(r1,c2)
else if loc(7) = pos(c) then l
take(#c,pos(c))
else do search(rl,c2)
move-to(zpos(c)) /
take(r,c,pos(c)) e-searchirl c2))
m-search(r,c)
task: search(r,c)
pre: pos(c) = unknown rove-tolrdiloct} | [perceivefioey)
body:
if 3/ (view(r,/) = F) then sensor failure
move-to(r,[)
Pfercelve(_b Ith e If other candidates for search(rl,c2), try them
! poigcl;)ezr . l)en e Not same as backtracking
else search,(r: c) » Different current state

else fail
24

Example

m-fetch(z,c)
task: fetch(zc)

pre: Refinement stack: fetch(rl,c2)
body:
if pos(c) = unknown then /
search(7.c) e fetch(rl,c2): m-fetch(rl,c2) m-fetch(r1,c2)
else if loc(7) = pos(c) then l
take(#c,pos(c))
else do seareh{rie2)
move-to(zpos(c)) /
take(#c,pos(c)) hirl c2) i
m-search(r,c)
task: search(r,c) ‘/?
pre: pos(c) = unknown rove-tolrdiloct} | [perceivefioey)
body: ' - -
if 317 (view(r,/) = F) then sensor failure
move-to(r,/)
perceive(/)
if pos(c) =/ then
take(r,c,0)

else search(7,c)
else fail

25

Example

m-fetch(z,c)
task: fetch(zc)

pre: Refinement stack: fetch(r1,c2)
body:
if pos(c) = unknown then /
search(r;c) e fetch(rl,c2) s-fetehlrle2)
else if loc(7) = pos(c) then l
take(#c,pos(c)) I
else do searehtrlc2)
move-to(zpos(c)) /
take(#c,pos(c)) hirl c2) .
m-search(r,c)
task: search(r,c) ‘/?
pre: pos(c) = unknown rove-tolrdiloct} | [perceivefioey)
body:
if 37 (view(r,) =F) then sensor failure
move-to(r,[)
percelve(l) e If other candidates for fetch(rl,c2), try them
if pos(c) =/ then :
e Not same as backtracking
take(r,c,0)
else search(r,c) » Different current state

else fail

2c. Extensions

Events Goals
method-name(arg,, ..., arg;) method-name(arg,, ..., arg,)
event: event-identifier task: achieve(condition)
pre: fest pre: test
body: program body: program
e Example: an emergency e Write goal as a special kind of task
» Ifyou aren’t already handing » achieve(condition)
another emergency, then e Like other tasks, but includes
e stop what you’re doing, go monitoring
handle the emergency > if condition becomes true before

finishing body(m), stop early

m-emergency(r,/,7) I =location, i = event ID > if condition isn’t true after
event: emergency(/,i) finishing body(m),
pre: emergency-handling(r) = F fail and try another method

body: emergency-handling(r) «— T
if load(r) # nil then put(r,load(r))
move-to(/)
address-emergency(/,i)

27

Extensions

Concurrent subtasks body of a method:
» refinement stack for each one .

{concurrent: 7, 75, ..., T,}
Controlling the progress of tasks Agenda ={stack,, stack,, ..., stack,}

> e.g., suspend a task for a while

If there are multiple stacks, which ones get higher priority?

» Application-specific heuristics

For a task 7z, which candidate to try first?
» Refinement planning

Candidates = Instances(z, M &)

28

Outline

1. Representation
a. State variables, commands, refinement methods
b. Example
2. Acting
a. Rae (Refinement Acting Engine)
b. Example
c. Extensions
3. Planning
a. Motivation and basic ideas
b. Deterministic action models
c. SeRPE (Sequential Refinement Planning Engine)
4. Using Planning in Acting
a. Techniques

b. Caveats

29

3a. Motivation

e When dealing with an event or task, Rae may need to make either/or
choices

» Agenda: tasks t, ©,, ..., T,
e Secveral tasks/events, how to prioritize?
» Candidates for z,: my, m,, ...,
e Several candidate methods or commands, which one to try first?
e Rae immediately executes commands
» Bad choices may be costly

e oOr irreversible

30

Refinement Planning

® Basic idea:

» @Go step by step through Rae, but don’t send commands to execution
platform

» For each command, use a descriptive action model to predict the next
state

o Tells what, not how
> Whenever we need to choose a method

e Try various possible choices, explore consequences, choose best

® Generalization of HTN planning
» HTN planning: body of a method 1s a list of tasks
» Here: body of method is the same program Rae uses

» Use it to generate a list of tasks

31

Refinement Planning

Example Search tree:
® Suppose Rae +planner learns in advance that the fetch(rl,c2)
sensor 1sn’t available /
» Lookahead tells it that m-search will fail m-fetch(r1,c2)
> If another method is available, Rae + planner l
will use it

search(rl,c2)

e Otherwise, Rae + planner will deduce that it /
cannot do fetch

m-search(rl,c2)

tasks ‘/?

move-to(rl,locl) | Heereeivetocd)

<

commands ‘ events

sensor failure

v

Execution Platform
Environment

32

3b. Descriptive Action Models

e Predict the outcome of performing a command

» Preconditions-and-effects representation

e Command. ® Action model
> take(ro,l): take(r0,/)
robot r takes object o at location / pre: cargo(r) = nil, loc(r)=1, loc(o)=1

eff: cargo(r) < o, loc(o) «— r

33

Descriptive Action Models

e Predict the outcome of performing a command

» Preconditions-and-effects representation

e Command. ® Action model
> take(ro,l): take(r0,/)
robot r takes object o at location / pre: cargo(r) = nil, loc(r)=1, loc(o)=1

eff: cargo(r) < o, loc(o) «— r
> put(ro,l): put(ro,l)

r puts o at location / pre: loc(r)=1, loc(o)=r
eff: cargo(r) < nil, loc(o) « /

34

Descriptive Action Models

e Predict the outcome of performing a command

» Preconditions-and-effects representation

e Command. ® Action model
> take(ro,l): take(r0,/)
robot r takes object o at location / pre: cargo(r) = nil, loc(r)=1, loc(o)=1

eff: cargo(r) < o, loc(o) < r

> put(ro,l): put(ro,l)
r puts o at location / pre: loc(r)=1, loc(o)=r
eff: cargo(r) < nil, loc(o) « /

> perceive(rl): perceive(r]):
robot sees what objects are at / 2
e can only perceive what’s at » If we knew this in advance,
its current location perception wouldn’t be necessary

Can'’t do the fetch example

35

Limitation
@ Most environments are inherently nondeterministic

» Deterministic action models won’t always make the right prediction
e Why use them?

— Al

grasp(c)

® Deterministic models => much simpler planning algorithms
» Use when errors are infrequent and don’t have severe consequences

» Actor can fix the errors online

36

Planning/Acting at Different Levels

: Co . t
e Sometimes deterministic models respond to user requests

will work more reliably at some levels
than at others

v

bring 07 to room2

e May want to use Rae+planner ~ ,-=------------~-{--~—~~—~-~—~-~-~--~----
at some levels, Rae at others : go to | | navigate | | fetch | | navigate | | deliver
| |hallway| |to room1|| o7 | |to room2 o7
\ T ___—C T /N /A——--—-—JI_C
| |
e In other cases, might want to | A A A v
plan with nondeterministic B .
outcomes |move to door open door| |get out| |close door |
> Paolo will discuss later B R i\ e %3\— —A----

ungrasp

identify| | move

maintain| | back

ras
type close l%nol? turn

of to knob| | pull pull
door || knob

monitor| [monitor

37

Simple Deterministic Domain

® Robot can move containers % d, / /
) U

"]

_/ AC,

> Action models: P1| G |2 r / S |y
0O O O / P>
dl / y d2 Dp3
load(r,c,c’,p,d)

pre: at(p,d), cargo(r)=nil, loc(r)=d, pos(c)=c’, top(p)=c
eff: cargo(r)«—c, pile(c)«—nil, pos(c)«r, top(p)«—c’

unload(r,c,c’p,d)

pre: at(p,d), pos(c)=r, loc(r)=d, top(p)=c’
eff: cargo(r)«—nil, pile(c)«—p, pos(c)«c’, top(p)«—c

move(r,d,d")
pre: adjacent(d,d"), loc(r)=d, occupied(d’)=F
eff: loc(r)=d’, occupied(d)=F, occupied(d')=T

Tasks and Methods

e Task: put-in-pile(c,p") — put c into pile p'if it isn’t there already

m1-put-in-pile(c,p’) m2-put-in-pile(r,c,p,d,p".d")
task: put-in-pile(c,p”) task: put-in-pile(c,p’)
pre: pile(c)=p’ pre: pile(c)=p A at(p,d) A at(p'.d")
body: // empty A pFp' A cargo(r)=nil
body: if loc(r) # d then navigate(r,d)
If ¢ 1s already 1n p’, do nothing uncover(c)

load(r, ¢, pos(c), p, d)
if loc(r) # d' then navigate(r,d’)

unload(r, c, top(p"), p', d)
Ifcisn’tinp’
> find a route to ¢, follow 1t to ¢

Nﬁ 7 d, /7 > uncoverc,load c onto r
p17

1 ;| » move top’, unload c

r o ¢

d,° © 10/ / : d _3/p2
2

1

39

Tasks and Methods

e® Task: uncover(c) — remove everything that’s on ¢

m]_-uncover(c) m2—uncover(r,c,c,p’,d)
task: uncover(c) task: UI’]COVGI‘(C)
pre: top(pile(c))=c pre: pile(c)=p A top(p)#c
body: // empty A at(p,d) A at(p'.d) A p'#p
A loc(r)=d A cargo(r)=nil
If nothing 1s on ¢, do nothing body: while top(p) # ¢ do
¢’ top(p)

load(r,c’,pos(c’),p,d)
unload(r,c’,top(p").p’,d)

while something 1s on ¢

> remove whatever is at
the top of the stack

g —> | [— c2
c17 / c17 c37 c17 c3/

3c. SeRPE (Sequential Refinement Planning Engine)

SeRPE(M, A, s,T)
Candidates < Instances(M, 7, s)
if Candidates = @ then return failure

® Which candidate method for 7 ?

® Rae: arbitrary choice

nondeterministically choose m € Candidates » no search, purely reactive
return Progress-to-finish(M, A, s, 7, m) ® SeRPE: nondeterministic choice
M = {methods} > search among alternatives
A= eI » many possible search
Rae(M) s = initial state Y p
Agenda +— @ _ strategies
T = task or goal
loop

until the input stream of external tasks and events is empty do
read 7 in the input stream
Candidates < Instances(M, 7, &)
if Candidates = @ then output(“failed to address”)
else do

arbitrarily choose|m € Candidates
Agenda < Agenda U {{(7,m,nil, @))}
for each stack € Agenda do
Progress(stack)
if stack = @ then Agenda < Agenda \ {stack}

41

Refinement Tree

task
put-in-pile(c,,p,)
SeRPE(M, A, s, T) |
Candidates < Instances(M, 7, s) method
if Candidates = & then return failure m2-put-in-pile(ry,¢4,P4,d;,P,d,)
nondeterministically choose m € Candidates task
return Progress-to-finish(M, A, s, 7, m) uncover(c,)

|

action
unload(r,,c,,C5,P5,d,)

method task
m1-uncover(c,) / navigate(r,,d,)
(no children) \

method
m2-navigate(r,,d,)
action ‘
load(r,,c,nil,p,,d,)

d action
2 : / move(r,,d,,d,)

42

Heuristics For SeRPE

SeRPE(M, A, s, T)

Candidates < Instances(M, T, s)

if Candidates = & then return failure
nondeterministically choose/m € Candidates
return Progress-to-finish(M, A, s, 7, m)

® Ad hoc approaches:
» domain-specific estimates
> keep statistical data on how well each method works
> try methods (or actions) in the order that they appear in /M (or ‘A)
e Ideally, would want to implement using heuristic search (e.g., GBFS)
» What heuristic function?
» Open problem
® SeRPE is a generalization of HTN planning

» In some cases classical-planning heuristics can be used, in other cases
they become intractable [Shivashankar ef al., ECAI-2016]

43

Outline

1. Representation
a. State variables, commands, refinement methods
b. Example
2. Acting
a. Rae (Refinement Acting Engine)
b. Example
c. Extensions
3. Planning
a. Motivation and basic ideas
b. Deterministic action models
c. SeRPE (Sequential Refinement Planning Engine)
4. Using Planning in Acting
a. Techniques

b. Caveats

44

4a. Using Planning in Acting

e Two approaches:

» REAP (Refinement Engine for Acting and Planning)
e RAE-like actor, uses SeRPE-like planning at all levels
e Pseudocode is complicated
o We’ll skip it
» (see Section 3.4 of Automated Planning and Acting)

» Non-hierarchical actor with refinement planning
e Much simpler

e [llustrates the basic i1ssues

45

Using Planning in Acting

Run-Lookahead Planning stage
while (s < observed state) ¥ g do Acting stage
n < Lookahead(M, A,s,7)
if © = failure then return failure - ~"So=—] | H----- Q

a < pop-first-action(m); perform(a)

® |ookahead: modified version of SeRPE (discuss later)

® Scarches part of the search space, returns a partial plan

e Useful when unpredictable things are likely to happen
» Always replans immediately
e Potential problem:
» May pause repeatedly while waiting for Lookahead to return

» What if s changes during the wait?

46

Using Planning in Acting
Run-Lazy-Lookahead

s «— observed state
while s ¥ g do
n < Lookahead(M, A,s,7)

if T = failure then return failure
while 7 # () and s ¥ g and Simulate(s,g,n) # failure do
a < pop-first-action(rn); perform(a); s «— observed state

e (all Lookahead, execute the plan as far as possible,
don’t call Lookahead again unless necessary

e Simulate does a simulation of the plan
» Can be more detailed than SeRPE’s action models
e c¢.g., physics-based simulation
e Potential problem: may wait too long to replan
» Might not notice problems until it’s too late

» Might miss opportunities to replace 7 with a better plan

47

Using Planning in Acting

Run-Concurrent-Lookahead Planning thread
T« {); s « observed state Acting thread
thread 1:

loop S==== | Ae--- Q
n < Lookahead(M, A,s,7)
thread 2:
loop

if s = g then return success
else if m = failure then return failure
else if # () and Simulate(s,g,) # failure do
a < pop-first-action(rn); perform(a); s «— observed state

e Objective:
> Balance tradeoffs between Run-Lookahead and Run-Lazy-Lookahead

» More up-to-date plans than Run-Lazy-Lookahead, but without waiting for
Lookahead to return

48

How to do Lookahead

Receding horizon
» Cut off search before reaching g
e ec.g.,ifplan’s length exceeds /.,
e or if plan’s cost exceeds c,,,
e or when we’re running out of time

» Horizon “recedes” on the actor’s
successive calls to the planner

Sampling

5 g
Planning

Acting

» Try a few (e.g., randomly chosen) depth-first

rollouts, take the one that looks best
Subgoaling

» Instead of planning for ultimate
goal g, plan for a subgoal g;

» When it’s finished with g,
actor calls planner on next subgoal g..

Can use combinations of these

<=

49

Example

Killzone 2

» video game
SeRPE-like planner
» Domain-specific

» Plans enemy actions
at the squad level

Don’t want to get the best possible plan

» Need actions that appear believable and consistent to human users
» Need them very quickly

Use subgoaling

> e.g., “get to shelter”

» solution plan i1s maybe 4—6 actions long

Replan several times per second as the world changes

50

4b. Caveats

e Start in state s,, want to accomplish task ¢

» Refinement method m: -

e task:t / l \
® pre:s
° body:oal, a,, a, 4 _’@_’ % _’@_’ a3

® Actor uses Run-Lookahead

> Lookahead = SeRPE, returns {a,, a,, a;)

» Actor performs a,, calls Lookahead again

» No applicable method for 7 in s, SeRPE returns failure
e Fixes

» When writing refinement methods, make them general enough to work
in different states

» In some cases Lookahead might be able to fall back on classical
planning until it finds something that matches a method

» Keep snapshot of SeRPE’s search tree at s,, resume next time it’s called

Caveats

e Start in state s,, want to accomplish task ¢

» Refinement method m:
e task:7

® pre:s,

horizon

/

a
* body: a,, a,, a; :

~(-

® Actor uses Run-Lazy-Lookahead

S

» Lookahead = SeRPE with receding horizon, returns <a,, a,’

» Actor performs them, calls Lookahead again

» No applicable method for 7 in s,, SeRPE returns failure

e® Can use the same fixes on previous slide, with one modification

» Keep snapshot of SeRPE’s search tree at horizon

52

Caveats

Start in state s,, want to accomplish task 7

» Refinement method m:
e task: 7
e pre:s,

e body: a,, a,, a,

Actor uses Run-Lazy-Lookahead

i

a

~(0

> Lookahead = SeRPE, returns {a,, a,, a;)

» While acting, unexpected event

» Actor calls Lookahead again

a

» No applicable method for 7 in s,, SeRPE returns failure

Can use most of the fixes on last two slides, with this modification:

» Keep snapshot of SeRPE’s search tree after each action

e Restart it immediately after a,, using s, as current state

Also: make recovery methods for unexpected states

e c.g., fix flat tire, get back on the road

53

Summary

Representation:
> state variables, commands/actions, refinement methods
Refinement Acting Engine (RAE)
» Purely reactive
e For each task, event, or goal, select a method and apply it
Refinement planning (SeRPE)
» Simulate RAE’s operation on a single task/event/goal
» Deterministic actions
e OK if we’re confident of outcome, can recover if things go wrong
Acting and planning
» Lookahead: search part of the search space, return a partial solution
e Several techniques for doing that
> Caveats
e (urrent state may not be what we expect

e Possible ways to handle that

54

Deliberation with
Refinement

Methods

Malik Ghallab, Dana Nau, Paolo Traverso
Automated Planning and Acting
Cambridge University Press

IJCAI 2016 Tutorial
New York, July 11,2016

Any questions? |

55

