Deliberation with ' §
Temporal Models §

Automated Planning
and Acting

Malik Ghallab, Dana Nau

1ICA/ Tutorial and Paolo Traverso
NY, July 2016

Planning and Acting Success Stories

.,
.. G{l"

Spacecraft

l/‘

./

[RAX/PS, NASA AMES & JPL] 2

Planning Success Stories

>

. A
|| /
g :

T T TR T
<

' .
) /

00:00:10:01

| IxTel, LAAS]

e s g Planning Success Stories

[120,120]

K communication
Communicate . goal

:
MOVE _PAN TILT UNIT(AT MY FEET, STRAIGHT) - H ¥% =
COMMUNICATE (W1) —E—ﬁ\
MOVE (9. 000000, -0. 500000, 10. 000000, -3. 000000) — ,lj_,

A
MOVE PAN TILT UNIT{STRAIGHT, AT MY FEET) = ﬁal =
TAKE PICTURE (0EJ4, 10. 000000, -3. 000000) = || \ =y
MOVE PAN TILT UNIT(AT MY FEET, STRAIGHT) - H 1& =
COMMUNICATE (W2) 'J' l_r:
MOVE |j:1I:I, Qo0000, -2. 000000, 8. 000000, -5. 000000 :j| "L I‘_'Ia, — -
DOWNLOAD_IMAGES () € *ihh—ﬁ =
MOVE PAN TILT UNIT(STRAIGHT, AT MY FEET) - Lux % =)
TAKE PICTURE (0BJ3, 8. 000000, -5. 000000} - Ali =

4

MOVE_PAN TILT UNIT{AT MY FEET, STRAIGHT) - tlt =)
MOVE |j: 8. 000000, -5. 000000, 0.500000, -0.500000 :jn — T {."' T — -

|[IxTel, LAAS]

Planning Success Stories

| Casper, JPL] |7-ReX, MBARI]

Common point to these success stories:
explicit representation of time

Motivations for Temporal Models

Duration of actions

Delayed effects, conditions, and resources borrowed or consumed
at various moments along an action duration

Timed goals with relative or absolute temporal constraints
Exogenous events expected to occur in the future time

Maintenance actions: maintain a property (# changing a value),
e.g., tfracking a moving target, keeping a spring latch in position

Concurrency of actions with interacting and joint effects

Delayed commitment: instantiation at acting time

state variables

>

tate s;
state Si+j

‘

\ 4

frime

Temporal Models

Motivations for Temporal Models

States Timelines

Duration of actions Vv Vv

Delayed effects | vl v
Timedgoals | M v
Exogenousevents | ~ | v
Maintenance actions | Y | v
Concurrency | - | v
Delayed commitment | - | v

Timeline

= A set of constraints on state variables and events
" Reflects predicted actions and events

Timeline

" Timeline planning akin to constraint-based planning

Mouse Time:23:59
MOVE_PAN TILT UNIT{STRAIGHT, AT MY FEET)

TAKE_PICTURE (0EJ1, 0.500000, -0.500000)
MOVE_PAN_TILT UNIT(AT MY FEET, STRAIGHT)
MOVEX (0. 500000, -0. 500000, 9. 000000, -0. 500000)
MOVE_PAN_TILT UNIT(STRAIGHT, AT MY FEET)
TAKE_PICTURE (0EJ2, 9. 000000, -0. 500000)
MOVE_PAN_TILT UNIT(AT MY FEET, STRAIGHT)
COMMUNICATE (W1)

MOVE (9. 000000, -0. 500000, 10. 000000, -3. 000000}
MOVE_PAN_TILT UNIT(STRAIGHT, AT MY FEET)
TAKE_PICTURE (0EJ4, 10. 000000, -3. 000000}
MOVE_PAN_TILT UNIT(AT MY FEET, STRAIGHT)
COMMUNICATE (W2)

MOVE (10. 000000, -3. 000000, 8. 000000, -5. 000000)
DOWNLOAD_IMAGES ()

MOVE_PAN_TILT UNIT(STRAIGHT, AT MY FEET)
TAKE_PICTURE (0EJ3, 8. 000000, -5. 000000}
MOVE_PAN_TILT UNIT(AT MY FEET, STRAIGHT)

MOVE (8. 000000, -5. 000000, 0. 500000, -0. 500000}

mh m T 4--"""‘

__#: L= L Uy
! L

4

4

4

4

4

4

Representation

o Timelines

o Actions and tasks

o Chronicles

Temporal planning

Consistency and controllability
Acting with executable primitives
Acting with atemporal refinement

Conclusion

Outline

10

» Quantitative discrete model of time
o variables referring to time points

* simple constraints

» Temporal assertions
* persistance over an interval

* change over an interval

Representation

d<t —t<d

[tl, tQ]QS — v

[tl,tg]x:(vl,vg)

11

Timeline

Partially predicted evolution of a state variable: a pair (T,C)

= T :temporal assertions
= C . contraints

A

=
el Persistence
o W I
*oc2 change
. . . . —
l1 2 I3 l4 time

To restrict the value of loc(r1) in [# #)]

:tl,tQ: OC(F].) : (|OC1,l)
:t2,t3: OC(F].) =5/
t3, tqlloc(rl) : (I, loc2)
1 <tg <13 <14

[# locl

[# loc2

t1,t1 + 1] loc(rl):(locl,route)
to — 1,ts] loc(rl):(route, 1)

t1 4+ 1,t2 — 1] loc(rl)= route

12

Consistent and Secure Timeline

» Aground instance of (T,C) is consistent if it satisfies C and no
state variable in T has more than on value at the same time

» (T,C)
» (T,C)

s consistent if it has a consistent ground instance

IS secure If it Is consistent and

every ground instance that satisfies C is consistent

:t17t2:

:t27t3:

loc(r) = locl
loc(r) : (locl,loc2) secure timeline

1 < to <13

13

Consistent and Secure Timeline

» Aground instance of (T,C) is consistent if it satisfies C and no
state variable in T has more than on value at the same time

» (T,C)is consistent if it has a consistent ground instance

» (T,C)is secure if it is consistent and
every ground instance that satisfies C is consistent

:tla t2

13,14

loc(r) = locl
loc(rl) : (1,1")

11 < tg,l3 <1y

Conflicting assertions
=> separation constraints

4 locl

timeline consistent =
ke,
but not secure

r#£rl
to < 13
tha < 14
to =t3,r=rl,l =locl
ty =t1,7r =rl,l’ = locl

14

Causally supported timeline

» Causal support of the value of x : reasons that substantiate it

* Prior knowledge about current state or dynamics of environment

e Observation

e Prediction of actions effects

Persistence
|

!OCZ Change

loc(rl)

l I I3 14 fime

» Causally supported timeline:
all its assertions have a causal support

15

Finding causal support

» Adding a persistence assertion

t1,t2]loc(rl):(locl,loc2), [t3, t4]loc(rl):(loc2,loc3)
11 <tg <tz <y

ta,t3] loc(rl)=loc2

loc(rl)

l % 13 14 time

16

Finding causal support

» Adding a persistence assertion

» Adding constraints

t1,t2]loc(rl):(locl,loc2), |t3, t4]loc(r) = (
1 <tg <tz <1y

to =t3,r =rl,[= loc2

loc(r)

1 12 13 14 time
17

Finding causal support

» Adding a persistence assertion

» Adding constraints

» Adding a change assertion = corresponds to an additional action

1, t2]loc(rl)= locl, |t3, t4]loc(rl):(loc3,loc4)
11 <1g <13 <14

>

to,t3]loc(rl):(locl,loc3)

Lloc4

loc(rl)

1 1% 13 14 time

18

Example

» Domain objects r € Robots, k € Cranes, ¢ € Containers
p € Piles, d € Docks, w € Waypoints

» State variables

loc(r) € Docks U Waypoints for r € Robots
freight(r) € Containers U {empty} for r € Robots
grip(k) € Containers U {empty} for k € Cranes
pos(c) € RobotsU CranesU Piles for ¢ € Containers
stacked-on(c) € ContainersU {empty} for ¢ € Containers
top(p) € ContainersU {empty} for p € Piles
occupant(d) € Robots U {empty} for d € Docks

» Rigid relations attached C (CranesU Piles) x Docks
adjacent C Docks x Waypoints
connected C Waypoints x Waypoints

19

Example

» Primitive actions

leave(r, d, w)
enter(r, d, w)
navigate(r, w, w")
stack(k, ¢, p)
unstack(k, c, p)
put(k, ¢, 7)
take(k, c,)

: robot r leaves dock d to an adjacent waypoint w

. r enters d from an adjacent waypoint w

. r navigates from waypoint w to a connected one w’
. crane k holding container ¢ stacks it on top of pile p
. crane k unstacks a container ¢ from the top of pile p
. crane k holding a container ¢ and puts it onto r

. crane k takes container ¢ from robot r

20

Primitives

take(k, c, 1)
assertions: |tg,te|pos(c):(r, k) : ~
s, telgrip(k):(empty, c)
.1, freight(r):(c, empty) | =
ts,te|loc(r)=d ‘iz]~
constraints: attached(k, d)

leave(r, d, w)
assertions: [ts,t.]loc(r):(d, w)
ts,te]occupant(d):(r, empty)
constraints: t. < ts + 0q
adjacent(d, w)

21

Tasks and methods

bring
pile(c)=p’
cargo(r)=nil
» Tasks e |
move 1 move
I ————
[ts,te]bring(fr, C7p) _uncover \ load unload
t = o
>
Is I3 4 15 le t7 le

:tsa tl:
:tsv t2:
t3,t4
:t77 te:

move(r, d)
uncover(k, ¢, p)
load(k, r, ¢, p)
unload(k, r, ¢, p)

22

Tasks and methods

» Methods bring
pile(c)=p’
cargo(r)=nil
___move 7, move
E_uncover \ load _ unload
m-bring(r,c,p,p’,d,d', k, k") . - >
task: bring(r, ¢, p) s 3 oI5 ‘6 17 fe
refinement: [ts,t1|move(r,d’)
ts,ta]uncover(c, p’)
:tg, t4: Ioad(k’, T, C, p/)
ts, tg|move(r, d)
t7,telunload(k, r, ¢, p)
assertions: |tg, t3|pile(c)=p’
ts,t3]freight(r)=empty

constraints: attached(p’,d’), attached(p,d), d # d’
attached(k’,d’), attached(k, d)
t1 < t3, to St3, T4 S U5, 16 S Uy

23

» Methods

Tasks and methods

move
navigate
. leave enter

m-movel(r,d,d , w,w")
task: move(r, d)

refinement:

assertions:

:t87 tl
:t27 t3

:t47 te_

leave(r, d’, w")
navigate(w’, w)
enter(r, d, w)

ts,ts + 1]loc(r)=d’

constraints: adjacent(d,w), adjacent(d’,w’), d # d’
connected(w, w’)
t1 < l2, 13 < 14

24

» Methods

m-uncover(c, p, k,d,p")

Tasks and methods

unstack

uncover

stack

uncover

Ls

task: uncover(c, p)

refinement:

assertions:

constraints: attached(k, d),
attached(p’,d), p # p’, c

ts,t1|unstack(k, ¢, p)

1o, t3]stack(k, c, p)

t4,tc]uncover(c, p)
(¢

ts,ts + 1]pile(c)=p
ts,ts + 1Jtop(p)=c’
ts,ts + 1]grip(k)=empty

attached(

tl StQ, t3 §t4

[

p,d)
’#C

12

I3

l4

25

» Chronicle ¢ = (A,S7,T,C)
o A:temporally qualified actions and tasks
o St :a priori supported assertions
o T:temporally qualified assertions
o (. constraints

» ¢ represents
o Current state and future predicted events
o Tasks to be performed
o Assertions and constraints to be satisfied
=> planning problems and (partial) plans

Chronicles

26

o :

tasks:
supported:

assertions:

constraints

t,t'|bring(r, cl, dock4)
ts|loc(rl)=dockl
ts|loc(r2)=dock?2

ts|top(pilel)=cl
ts|pos(cl)=pallet
te|loc(rl) = dockl
te|loc(r2) = dock?2

. attached(pilel,shipl)

e <t<t <te, 20<6<30,

bring(r, c1, dock4)

loc(r1)=dock1
top(pile-ship1)=c1

docked(ship1)=dock3

Chronicles

Initial chronicle

ts + 10,ts + d]docked(shipl)=dock3

ts =0

loc(r1)=dock1

27

» Partial plan

tasks:

supported:
assertions:

constraints

to,t1]leave(rl,dockl,wl)

t1,to|navigate(rl,wl,w2)

t3,ts]enter(rl,dock2,w?2

t,, t1]|leave(r2,dock2,w?2

t7, t5|navigate(r2,w2,wl

t5, t;|enter(r2,dockl,wl

St

T

Lt < tg, t1 <15, ts <t
ts < tf, tg <te, t) <te

Chronicles

)
)
)
)

leave
dock
i-s navigate enter
B dock?
r1n . 1
. 5 i >
lo 1] 13 Uy
, , : fime
t:o t:] t:2 t:3 t54 .
. . e
| . dock1
- navigate
leave
dock?2

adjacent(dockl,wl), adjacent(dock2,w?2)

connected(wl,w2)

28

4

4

4

4

4

Temporal planning

o Resolvers and flaws

o Search space

Consistency and controllability
Acting with executable primitives
Acting with atemporal refinement

Conclusion

Outline

29

Temporal Planning

Starting from an initial chronicle:

» Refine into primitive actions nonrefined tasks
N
» Add causal supports to nonsupported assertion c%
—
» Add separation constraints for conflicting assertions
bring(r, c1, dock4)
loc(r1)=dock1
Resolvers of flaws; ~ *PPieshPl=
docked(ship1)=dock3
» Methods | joc(r1)=dock
» Actions .
t le

» Persistence assertions and constraints

30

Temporal Planning

A chronicle ¢ is a valid solution plan iff
e ¢ does not contain nonrefined tasks

e all assertions in ¢ are causally supported, either by
supported assertions initially in ¢y or by assertions
from methods and primitives in the plan

e the chronicle ¢ is secure

31

Temporal Planning

TemPlan(¢, X)
Flaws < set of flaws of ¢
if Flaws=(then return ¢
arbitrarily select f € Flaws
Resolvers < set of resolvers of f
if Resolvers=() then return failure
nondeterministically choose p € Resolvers

¢ < Transform(¢, p)
Templan(¢,)

Combines in CSP-based approach
» task decomposition planning

» plan-space planning

» temporal planning

32

Resolvers for flaws

Resolver for a nonrefined task in ¢:
an instance m of a method applicable to the task s.t. all the
constraints of m are consistent with those of ¢.

Transforming ¢ = (A, S7,T,C) with resolver m:
e replace in A the task by the subtasks and actions of m

e add the assertions of m and those of the primitives in m
either to &7 if these assertions are causally supported
or to T

e add to C the constraints of m and those of its actions.

loc(r1)=dock] _
top(plle| sh|p1 bring(r, ¢1, dock4)

docked(ship1)=dock3 : loctr)zdocm

33

Resolvers for flaws

Nonsupported assertions in ¢ = (A,S7,7T,C): those initially

in ¢g plus
of actions

those from the refinement of tasks and the insertion

Different ways to support an assertion o € 7T :

e add

e adc

| in C constraints on object and temporal variables

| a persistence assertion in S+

e add
supporting « 4

in A a task or an action that brings an assertion

locl (~!OC4

loc(rl)

1 12 13 14 frime

34

Resolvers for flaws

Flaws due to conflicting assertions handled incrementally
by maintaining ¢ a secure chronicle:

e Detect possible conflicts for each new assertion in ¢

e [ind sets of separation constraints consistent
with the constraints in current ¢

e Add separation constraints to ¢

loc(r)

35

Search Space
» Planning search space: a directed graph

e Node: a chronicle ¢

o Edge (¢, @’): ¢’ ’=Transform(¢, 0), o resolver for flaw in ¢
o Acyclic graph

o Not necessarily finite

» Heuristics
o Flaw with smallest numbers of resolvers (as in variable-ordering)

o Resolver the least constraining to current ¢ (as in value-ordering)

o Elaborate heuristics based on domain transition graphs and
reachability graphs

» Critical operation: maintain consistency of C

36

» Consistency and controllability

o Object constraints

o Temporal constraint

o Controllability of an STNU
» Acting with executable primitives
» Acting with atemporal refinement

» Conclusion

Outline

37

Object constraints maintained by Templan
[#loc2, [€ {loc3, loc4}
r=r1r1,0#0’
loc(r) #1°
Temporal constraints maintained by Templan

a<t
r<t
a<t—t<>b

Possibly coupled constraints
t<f(l r)
=> Assume no coupled constraint

Consistency

38

Object Constraint

Unary and binary constraints on object variables
due to binding and separation constraints and rigid relations

Corresponds to maintaining the consistency of a general CSP
over finite domains => NP-complete problem

Incremental arc or path consistency algorithms

Instances

* Not complete, but efficient trade-off for filtering inconsistent

* Do not reduce the completeness of the algorithm, just prune
fewer nodes in search tree

Combined with com

free variables remai

P
N

ete algorithms, e.g., forward-checking on the
ing in the final plan

39

Temporal Constraints

» Simple temporal networks (STN)
12

A SZL]—ZLZS b 0 /3,4/
. o > ,
notation i = [a,b] " AR 2
s rji=/[-b,-af

' , 2
ental h t3x [2]
=

STN
» Incrementally synthesized by Templan starting from ¢y

» Incrementally instantiated at acting time

» Maintained consistent throughout planning and acting

40

» Simple temporal networks (STN)

a <ti—-t < b

notation ri; = [a,b]

ental

s rji=[-b,-a

» Constraint propagation rules

Temporal Constraints

Conditions Propagated constraint
a,b] : /,b/- /,b b

11 ke > 1o , 19 S > 13 11 oo’ btb] > 13
- 7b- - /7b/- Y ' Y . b7b/

t (a,b] ‘ot a’,b" . 1o t imazx{a,a’},min{ }H . 1o

P=414, 6]

Fio2®7o3

ri; N rp;

41

Temporal Constraints

Path consistency algorithm

PC(V, &)
foreach k:1 < k <n do
for each pair 2,7 :1 <i<j<n,i1#k,j #k do
Tij <= Tij N [Tik ® Tk;]
if r;; = & then return inconsistent

» Algorithm complete
» Returns a minimal network when consistent
» Complexity in time O(»’), incremental update in O(n?)

42

Controllability

» Controllable vs contingent time points

o ¢;and ¢z : controllable / /
1‘ [30, 50] 2

bring&move

* /> and ¢4 . contingent
random variables that are known g—uncover o
. . [3 [5, 10] 14
to satisfy some constraints

» PC cannot be allowed to constrain a
contingent time point

» Even if minimal network does not constrain any contingent time
point the corresponding plan may not be feasible

43

Controllability

minimal network

I _150,50] 12 b y30,50] 12
, - e 2 LY
bring&move o s 555 TN .
@—Lincover a"* = » EANN 4
[5,10 [
t d’] 4 t3 15, 10] i 7
d—d —5 <t
— = 40 < t3 <25 !
ts<d—d +5 =8 =

44

Dynamic Controllability

fl‘ 115,251 L [0,5] f. 15,201 12
—_— Ol —_— 5
bring move '

*
.
*
.
(3
*
.
. -
.
.)
.
*
.
*
*

uncover

O Ry
t3 [5, 10] 14

observe t
assign t’ at any moment after ¢ in [0, 5]
assign t3 10 units after ¢’

45

Dynamic Controllability

» Simple temporal network with uncertainty (STNU)
o Controllable and contingent time points

o Constraints, as in STN, controllable and contingent

» Controllable STNU: there exist values for controllable points that

meets all constraints

o Strong controllability. solution works for all possible values of
contingent points in their predicted intervals

o Weak controllability. so

utio

contingent points, if known

ﬂ

as a fu

ﬂ

In adva

nction of the values of
ce

o Dynamic controllability: solution that is built dynamically, for each
controllable point given the observation of past contingent points

46

Dynamic Controllability

» A dynamic execution strategy for an STNU:
online procedure for assigning, in some order, a value to each

controllable point ¢, (i.e., triggering commands at right moment)
e such that all controllable constraints are met, and

¢ given that the values of all contingent variables preceding ¢ are

known and fit their assumed constraints

» An STNU is dynamically controllable if there exists a dynamic

execution strategy for it

» Assigning a value to controllable ¢ = triggering a command

47

Dynamic Controllability

fl‘ 115,251 L [0,5] f. (15,207 L2
L — 3
bring move '

*
.
*
.
(3
*
.
. -
.
.)
.
*
.
*
*

uncover

O Ry
t3 [5, 10] 14

observe t
assign t’ at any moment after ¢ in [0, 5]
assign t3 10 units after ¢’

48

Checking dynamic controllability of an STNU

» For a chronicle ¢ = (A,S7,T,C) temporal constraints in C
correspond to an STNU
» TemPlan: maintains incrementally STNU dynamically controllable

o |[f Path Consistency reduces a contingent constraint

=> not dynamically controllable

o Otherwise: test of dynamic controllability as an extension of

Path Consistency with additional constraint propagation rules

49

Dynamic Controllability Checking

it w <0 and v > 0 then
t should wait until either t, +b — v

Constraint propagation rules

or t, occurs

Conditions Propagated constraint
a,b [u,v] (b ,a’]

tg —=1c , 1 >te , u >0 ts > 1
:a7b: [u,’v] <t€7b/>

ty == 1, , t s te, u<0, v>0 to s 1
:aab: <t€7u> [min{a,u},oo]

s == t, . 1, s 1 to . 1
te,b , te,b’

L BT L N LN
te,b : te,b—

AL AN LUl N g, b7

a =a—ub =b—w

50

Outline

» Acting with executable primitives
o Dispatching
o Observation actions

» Acting with atemporal refinement

» Conclusion

51

Dispatching Algorithm

Problem
» Given a dynamically controllable plan with executable primitives
» Trigger corresponding commands from online observations

pile(c)=p’
cargo(r)=nil
move ¢ move
m . _load 5 . _unload
t g - B .
5 leave(r2,d2) ;] P P ;
. : : : : : :
4 : : P P I
H _ s 13 4 ts I6 17 le
t i ‘:'al‘5
.q).ﬁ --------)‘ﬁ
leave(rl,d1) inavigate(rl) enter(rl,d2)
*t7 Is lo
"_: a.ﬂ-).ﬁ --------).ﬁ
, Y te " unstack(k,c1) putdown(k,c1,r1) leave(r1,d2)
4) - >@ Y
unstack(k,c’) stack(k,c’)

52

Dispatching Algorithm

Plan grounded in realtime: when constrained w.r.t.
absolute bounds or when execution starts

e Future point t is bounded with absolute bounds |l;, u]

e Past point is instantiated
A controllable time point ¢ that remains in the future

e tis alive if the current time now € [l;, uy]
e ¢ is enabled if
e ¢ is alive,

e for every precedence constraint ¢’ < ¢,
t’ has occurred, and

e for every wait constraint (.,),
either ¢, has occurred or o has expired

53

Dispatching Algorithm

Dispatch(plan)

initialize the network

while there are controllable points that have not occurred do
update now
update contingent points that have been observed
enabled < set of enabled points
for every t € enabled such that now= u; do

trigger t

arbitrarily choose other points in enabled; trigger them
propagate in the network the values of triggered points

» Temporal monitoring

54

Observation Actions

» Assumption: all occurrences of contingent events are observable
 Observation needed for dynamic controllability

* [n general not all events are observable
» Refining STNU into POSTNU

Controllable

Timepoints< / Invisible

Contingent
\ Observable

» Is POSTNU dynamically controllable ?

95

Observation Actions

1o
O.. /. {3.00
........ ’/93
.......?/ ,
- s Loq1,21 1, q20,25) 12
working driving

.
.
.
.
.
.
.
.
.
. -
e,)
.
.
.
.
.
.
.

[25,30] %

— P
I3 cooking 4

® Controllable

Contingent { % Invisible
© observable

56

Observation Actions

» POSTNU dynamically controllable if there exists an execution
strategy that chooses future controllable points to meet all the
contraints, given the observation of past visible points

» Observable # visible
e Observable means it will be known when observed

o |t can be temporarily hidden

Controllable
Timepoints < Invisible

Contingent < Visible
Observable / >
\\\\\fﬁdden

o7

v Introduction

v Representation

v Temporal planning

v Consistency and controllability
v Acting with executable primitives
» Acting with atemporal refinement

» Conclusion

Outline

58

Atemporal Refinement of Primitive Actions

» Planning primitives are compound tasks at the acting level
» Refined into commands with refinement methods in RAE

m-leave(r, d, w, e)
task: leave(r, d, w) |
pre: loc(r)=d, adjacent(d, w), exit(e, d, w) Operational
body: until empty(e) wait(1) mode]
goto(r, e)

leave(r, d, w)
Descriptive assertions: |tg, te|loc(r):(d, w)
model ts,te]occupant(d):(r, empty)
constraints: t., < ts + 01
adjacent(d, w)

59

Atemporal Refinement of Primitive Actions

» Planning primitives are compound tasks at the acting level
» Refined into commands with refinement methods in RAE

m-unstack(k, ¢, p)

task:
pre:

body:

unstack(k, ¢, p)

pos(c)=p, top(p)=c, grip(k)=empty

attached(k, d), attached(p, d)

locate-grasp-position(k, ¢, p) Operational
move-to-grasp-position(k, ¢, p) model
grasp(k, ¢, p)

until firm-grasp(k, ¢, p) ensure-grasp(k, ¢, p)
lift-vertically(k, ¢, p)

move-to-neutral-position(k, ¢, p)

60

Atemporal Refinement

» Pros
e Simple online refinement with RAE
* Avoids breaking down uncertainty of contingent duration

o Can be augmented with temporal monitoring functions in RAE
e.g., watchdogs, methods with duration preferences

» Cons

e Does not handle temporal requirements at the command level,
e.g., concurrency synchronization

61

Summary

» Rich chronicle representation with temporal refinement
» Planning with chronicle refinement
» Consistency and controllability

» Acting with chronicle dispatching and refinement

o ANML modeling language
o FAPE Acting and Planning Environment

62

Conclusion

» Temporal models enrich descriptive and operational models of

actions

» Chronicle-based approach very flexible for integrating generative

and task decomposition techniques

» Acting refinement methods can be extended to integrate temporal

construct of chronicles

63

action uncover (containers c, piles p){

[start] c.in ==p ;
:decomposition {[all] p.top ==
:decomposition {

constant (...) ;

|start] p.top == prevtop ;

p !=otherp; c !=prevtop ;

k.attached == d; p.ondock ==

otherp.ondock ==d ;
all] p.available == true

all] contains {

sl : unstack(k,prevtop.p) ;
s2: stack(k,prevtop,otherp);
s3: uncover(c,p) ;};
end(s]) <= start(s2);
end(s2) <= start(s3); };

all] otherp.available == true ;

C; };

Example: dwr

action goto (robots r, docks t0){
constant docks from;
constant waypoints wa, wb ;
[start] r.loc == from ;
:decomposition {from ==to ; };
:decomposition {from !=to ;
adjacent(from, wa) ;
adjacent(to, wb) ;
[all] contains {
sl : leave(r, from, wa) ;
s2: navigate(r, wa, wb) ;
s3 : enter(r, to, wb) ;};
end(sl) <= start(s2);
end(s2) <= start(s3);};
3

64

8

10

11

12

14
15

16
17

22

24
25

26
27

28
29

30
31

Example: search tree

48

46 49

oE

32
33

65

m3-bring(c22, p4) (id:4)
m3-bring(c12, p3) (id:11)
m2-goto(r1, d1) (id:14)
leave(r1, d3, w3) (id:15)
m2-goto(r2, d2) (id:21)
leave(r2, d4, wd) (id:22)
m1-navigate(r1, w3, w1) (id:30)
move(r1l, w3, w1) (id:31)
m1-navigate(r2, w4, w2) (id:32)
move(r2, wad, w2) (id:33)
enter(r1, d1. w1) (id:16)
enter(r2, d2, w2) (id:23)
dockpile(p12) (id:0)
dockpile(p11) (id:1)
m1-uncover(c12, p12) (id:34)
m1-load(c12, r1, p12) (id:12)
unstack(k1, ¢c12, p12) (id:13)
put(k1, ¢12, r1) (id:17)
m2-goto(r1, d3) (id:24)
leave(r1, d1, w1) (id:25)
m1-navigate(r1, w1, w3) (id:35)
move(r1, w1, w3) (id:36)
dockpile(p22) (id:2)
dockpile(p21) (id:3)

enter(r1, d3, w3) (id:26)
m1-uncover(c22, p22) (id:37)
m1-load(c22, r2, p22) (id:5)
unstack(k2, c22, p22) (id:6)
m1-unload(c12, r1, p3) (id:18)
take(k3, c12, r1) (id:19)

put(k2, c22, r2) (id:7)

stack(k3, c12, p3) (id:20)
m2-goto(r2, d4) (id:27)
leave(r2, d2, w2) (id:28)
m1-navigate(r2, w2, w4) (id:38)
move(r2, w2, wd) (id:39)
enter(r2, d4, w4) (id:29)
m1-unload(c22, r2, p4) (id:8)
take(k4, c22, r2) (id:9)
stack(k4, c22, p4) (id:10)

Example: plan found

