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Autonomous AI systems need complex computational techniques for planning and 
performing actions. Planning and acting require significant deliberation because 
an intelligent system must coordinate and integrate these activities in order to 
act effectively in the real world. This book presents a comprehensive paradigm 
of planning and acting using the most recent and advanced automated-planning 
techniques. It explains the computational deliberation capabilities that allow an 
actor, whether physical or virtual, to reason about its actions, choose them, organize 
them purposefully, and act deliberately to achieve an objective.

Useful for students, practitioners, and researchers, this book covers state-of-
the-art planning techniques, acting techniques, and their integration which will allow 
readers to design intelligent systems that are able to act effectively in the real world.

“Automated Planning and Acting will be the text I require my students to read when 
they first start, and the go-to book on my shelf for my own reference. As a timely 
source of motivation for game-changing research on the integration of planning  
and acting, it will also help shape the field for the next decade.”
From the Foreword by Sylvie Thiébaux, The Australian National University

“This book is currently the most comprehensive introduction into computational 
principles of deliberative action that I know of. Whoever thinks about bringing 
planning and reasoning to bear on robots or other agents embedded in the real  
world, should study it carefully – and share it with their students, too.”
Joachim Hertzberg, Osnabrück University

“This book by Ghallab, Nau and Traverso is the best to date on Automated Artificial 
Intelligence Planning. It is very comprehensive, covering topics both in the core 
of AI Planning and Acting and in other related AI areas such as robotic execution, 
automation and learning. Numerous features make it ideal for students to learn about 
AI Planning, including historical notes and many illustrative examples. The book will 
serve as a trove of resources for researchers and practitioners in AI planning and 
other AI fields.”
Qiang Yang, Named Chair Professor Head of Department of Computer Science and 
Engineering at Hong Kong University of Science and Technology

Cover image: The Conjuror (oil on panel) (pre-
restoration), Bosch, Hieronymus (c.1450–1516) / 
Musee d’Art et d’Histoire, Saint-Germain-en-Laye, 
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Planning and Acting Success Stories
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Planning Success Stories
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Planning Success Stories
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Planning Success Stories
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[Casper, JPL] [T-ReX, MBARI]

Common point to these success stories: 
explicit representation of time



Motivations for Temporal Models
‣ Duration of actions 

‣ Delayed effects, conditions, and resources borrowed or consumed 
at various moments along an action duration 

‣ Timed goals with relative or absolute temporal constraints 

‣ Exogenous events expected to occur in the future time 

‣ Maintenance actions: maintain a property (≠ changing a value), 
e.g., tracking a moving target, keeping a spring latch in position 

‣ Concurrency of actions with interacting and joint effects 

‣ Delayed commitment: instantiation at acting time

6



Temporal Models
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Motivations for Temporal Models
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States Timelines

Duration of actions √ √

Delayed effects √ √

Timed goals √ √

Exogenous events ~ √

Maintenance actions √ √

Concurrency – √

Delayed commitment – √



Timeline
Timeline

! A set of constraints on state variables and events
! Reflects predicted actions and events
! Timeline planning akin to constraint-based planning

Thrust Goals
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Engine Thrust (b, 200) Off

Delta_V(direction=b, magnitude=200)

Power
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Outline
✓ Introduction 
‣ Representation 

• Timelines 

• Actions and tasks 

• Chronicles 
‣ Temporal planning 
‣ Consistency and controllability 
‣ Acting with executable primitives 
‣ Acting with atemporal refinement 
‣ Conclusion

10



Representation
‣ Quantitative discrete model of time 

• variables referring to time points 

• simple constraints 

‣ Temporal assertions 

• persistance over an interval 

• change over an interval 

11

d  t0 � t  d0

[t1, t2]x = v

[t1, t2]x:(v1, v2)



Timeline

12

time

lo
c(
r1
)

loc1

loc2

l

t1 t2 t3 t4

Change

Persistence

Partially predicted evolution of a state variable:  a pair  (T,C ) 
! T : temporal assertions 
! C : contraints

[t1, t2]loc(r1) : (loc1, l)
[t2, t3]loc(r1) = l
[t3, t4]loc(r1) : (l, loc2)
t1 < t2 < t3 < t4
l 6= loc1

l 6= loc2

To restrict the value of loc(r1) in [t1, t2]
[t1, t1 + 1] loc(r1):(loc1,route)
[t2 � 1, t2] loc(r1):(route, l)
[t1 + 1, t2 � 1] loc(r1)= route



Consistent and Secure Timeline
‣ A ground instance of (T,C ) is consistent if it satisfies C and no 

state variable in T has more than on value at the same time 
‣ (T,C ) is consistent if it has a consistent ground instance 

‣ (T,C ) is secure if it is consistent and  
every ground instance that satisfies C is consistent

13

[t1, t2]loc(r) = loc1

[t2, t3]loc(r) : (loc1,loc2)
t1 < t2 < t3

secure timeline



Consistent and Secure Timeline
‣ A ground instance of (T,C ) is consistent if it satisfies C and no 

state variable in T has more than on value at the same time 
‣ (T,C ) is consistent if it has a consistent ground instance 

‣ (T,C ) is secure if it is consistent and  
every ground instance that satisfies C is consistent

14

[t1, t2]loc(r) = loc1

[t3, t4]loc(r1) : (l, l0)
t1 < t2, t3 < t4

timeline consistent 
but not secure

Conflicting assertions 
=> separation constraints

r 6= r1

t2 < t3
t4 < t1
t2 = t3, r = r1, l = loc1

t4 = t1, r = r1, l0 = loc1

lo
c(

r)

loc1

t1 t2t3 t4

l’

r=r1
l



Causally supported timeline
‣ Causal support of the value of x : reasons that substantiate it 

• Prior knowledge about current state or dynamics of environment 

• Observation 

• Prediction of actions effects

15

time

lo
c(
r1
)

loc1

loc2

l

t1 t2 t3 t4

Change

Persistence

‣ Causally supported timeline:  
all its assertions have a causal support



Finding causal support
‣ Adding a persistence assertion

16

[t1, t2]loc(r1):(loc1,loc2), [t3, t4]loc(r1):(loc2,loc3)
t1 < t2 < t3 < t4

[t2, t3] loc(r1)=loc2

time

lo
c(
r1
) loc1

loc3

t1 t2 t3 t4

loc2loc2



Finding causal support
‣ Adding a persistence assertion 
‣ Adding constraints

17

[t1, t2]loc(r1):(loc1,loc2), [t3, t4]loc(r) = l
t1 < t2 < t3 < t4

t2 = t3, r = r1, l = loc2

time

lo
c(

r)

loc1

loc2

t1 t2 t3 t4

l
r=r1



Finding causal support
‣ Adding a persistence assertion 
‣ Adding constraints 
‣ Adding a change assertion

18

[t1, t2]loc(r1)= loc1, [t3, t4]loc(r1):(loc3,loc4)
t1 < t2 < t3 < t4

[t2, t3]loc(r1):(loc1,loc3) loc4

time

lo
c(
r1
)

loc3

t1 t2 t3 t4

loc1

➡corresponds to an additional action



Example

‣ State variables

19

loc(r) 2 Docks [Waypoints for r 2 Robots

freight(r) 2 Containers [ {empty} for r 2 Robots

grip(k) 2 Containers [ {empty} for k 2 Cranes

pos(c) 2 Robots [ Cranes [ Piles for c 2 Containers

stacked-on(c) 2 Containers [ {empty} for c 2 Containers

top(p) 2 Containers [ {empty} for p 2 Piles

occupant(d) 2 Robots [ {empty} for d 2 Docks

‣ Rigid relations

r 2 Robots, k 2 Cranes, c 2 Containers

p 2 Piles, d 2 Docks, w 2 Waypoints

‣ Domain objects

attached ✓ (Cranes [ Piles)⇥Docks

adjacent ✓ Docks⇥Waypoints

connected ✓ Waypoints⇥Waypoints



Example
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‣ Primitive actions

leave(r, d, w) : robot r leaves dock d to an adjacent waypoint w

enter(r, d, w) : r enters d from an adjacent waypoint w

navigate(r, w,w0
) : r navigates from waypoint w to a connected one w0

stack(k, c, p) : crane k holding container c stacks it on top of pile p

unstack(k, c, p) : crane k unstacks a container c from the top of pile p

put(k, c, r) : crane k holding a container c and puts it onto r

take(k, c, r) : crane k takes container c from robot r



Primitives
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k1

c1

p1
r1 c2

leave(r, d, w)
assertions: [ts, te]loc(r):(d, w)

[ts, te]occupant(d):(r, empty)

constraints: te  ts + �1
adjacent(d, w)

take(k, c, r)
assertions: [ts, te]pos(c):(r, k)

[ts, te]grip(k):(empty, c)
[ts, te]freight(r):(c, empty)

[ts, te]loc(r)=d
constraints: attached(k, d)



Tasks and methods
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‣ Tasks

[ts, te]bring(r, c, p)

[ts, t1]move(r, d)
[ts, t2]uncover(k, c, p)
[t3, t4]load(k, r, c, p)
[t7, te]unload(k, r, c, p)

move 

t3

t1

t2

ts

uncover

pile(c)=p’ 
cargo(r)=nil

load

move 

unload

t4 t6t5 t7 te

bring 



Tasks and methods
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‣ Methods

move 

t3

t1

t2

ts

uncover

pile(c)=p’ 
cargo(r)=nil

load

move 

unload

t4 t6t5 t7 te

bring 

m-bring(r, c, p, p0, d, d0, k, k0)
task: bring(r, c, p)

refinement: [ts, t1]move(r, d0)
[ts, t2]uncover(c, p0)
[t3, t4]load(k0, r, c, p0)
[t5, t6]move(r, d)
[t7, te]unload(k, r, c, p)

assertions: [ts, t3]pile(c)=p0

[ts, t3]freight(r)=empty

constraints: attached(p0, d0), attached(p, d), d 6= d0

attached(k0, d0), attached(k, d)
t1  t3, t2  t3, t4  t5, t6  t7



Tasks and methods

24

‣ Methods

ts

leave

navigate 

enter

t1 t3t2 t4 te

move 

m-move1(r, d, d0, w, w0
)

task: move(r, d)
refinement: [ts, t1]leave(r, d0, w0

)

[t2, t3]navigate(w0, w)
[t4, te]enter(r, d, w)

assertions: [ts, ts + 1]loc(r)=d0

constraints: adjacent(d, w), adjacent(d0, w0
), d 6= d0

connected(w,w0
)

t1  t2, t3  t4



Tasks and methods
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‣ Methods

ts

unstack

stack 

t1 t3t2 t4 te

uncover 

uncover 

m-uncover(c, p, k, d, p0)
task: uncover(c, p)

refinement: [ts, t1]unstack(k, c0, p)
[t2, t3]stack(k, c0, p0)
[t4, te]uncover(c, p)

assertions: [ts, ts + 1]pile(c)=p
[ts, ts + 1]top(p)=c0

[ts, ts + 1]grip(k)=empty

constraints: attached(k, d), attached(p, d)
attached(p0, d), p 6= p0, c0 6= c
t1  t2, t3  t4



Chronicles
‣ Chronicle φ = (A,ST,T,C)  

• A: temporally qualified actions and tasks 

• ST : a priori supported assertions 

• T: temporally qualified assertions 

• C: constraints 

‣ φ represents 
• Current state and future predicted events 
• Tasks to be performed 
• Assertions and constraints to be satisfied 

 => planning problems and (partial) plans

26



Chronicles
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loc(r1)=dock1 
top(pile-ship1)=c1

docked(ship1)=dock3

te

bring(r, c1, dock4) 

loc(r1)=dock1

Initial chronicle

�0 :

tasks: [t, t0]bring(r, c1, dock4)
supported: [ts]loc(r1)=dock1

[ts]loc(r2)=dock2

[ts + 10, ts + �]docked(ship1)=dock3

[ts]top(pile1)=c1

[ts]pos(c1)=pallet

assertions: [te]loc(r1) = dock1

[te]loc(r2) = dock2

constraints: attached(pile1,ship1)

ts < t < t0 < te , 20  �  30 , ts = 0



Chronicles
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Section 4.3 159

3

time

r1

leave  
dock1

t1 t3 t4t0

navigate enter  
dock2

r2

leave  
dock2

t’1 t’2 t’4t’0

navigate

enter  
dock1

t2

t’3

Figure 4.4: Temporally qualified actions of two robots r1 and r2 (arrows
express the precedence constraints t0

1

< t
3

and t
1

< t0
3

)

by the subtasks and primitives specified in m, and T and C are augmented
with the assertions and constraints of m and those of its primitives.

When a task is refined, the free variables in methods and primitives
are renamed and possibly instantiated. For example, enter is specified in
Example 4.11 with the free variables r, d, w, t

s

, t
e

. In the first instance of
enter in the chronicle of Example 4.15 these variables are respectively bound
to r1, dock2, w2, t

3

, t
4

. In the second instance of enter they are bounded to
r2, dock1, w1, t0

3

, t0
4

. The general mechanism for every instance of a primitive
or a method is to rename the free variables in its its template to new names,
then to constrain and/or instantiate these renamed variables when needed.

Furthermore, when refining a task and augmenting the assertions and
contraints of a chronicle, as specified by a method, we need to make sure
that (T , C) remains secure. Separation constraints will be added to C to
handle conflicting assertions. The consistency of the resulting constraints
will be checked. This will be detailed in Section 4.4.

Finally all the assertions of a chronicle have to be supported through the
mechanisms presented next.

Draft, not for distribution. November 25, 2015.

‣ Partial plan

� :

tasks: [t0, t1]leave(r1,dock1,w1)
[t1, t2]navigate(r1,w1,w2)
[t3, t4]enter(r1,dock2,w2)
[t00, t

0
1]leave(r2,dock2,w2)

[t01, t
0
2]navigate(r2,w2,w1)

[t03, t
0
4]enter(r2,dock1,w1)

supported: ST
assertions: T

constraints: t01 < t3, t1 < t03, ts < t0
ts < t00, t4 < te, t04 < te
adjacent(dock1,w1), adjacent(dock2,w2)

connected(w1,w2)



Outline
✓ Introduction 

✓ Representation 

‣ Temporal planning 

• Resolvers and flaws 

• Search space 

‣ Consistency and controllability 

‣ Acting with executable primitives 

‣ Acting with atemporal refinement 

‣ Conclusion
29
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Temporal Planning
Starting from an initial chronicle: 
‣ Refine into primitive actions  nonrefined tasks 

‣ Add causal supports to   nonsupported assertion 

‣ Add separation constraints for  conflicting assertions

30

Resolvers of flaws: 
‣ Methods 

‣ Actions  
‣ Persistence assertions and constraints

ts

loc(r1)=dock1 
top(pile-ship1)=c1

docked(ship1)=dock3

te

bring(r, c1, dock4) 

loc(r1)=dock1



Temporal Planning
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A chronicle � is a valid solution plan i↵

• � does not contain nonrefined tasks

• all assertions in � are causally supported, either by

supported assertions initially in �0 or by assertions

from methods and primitives in the plan

• the chronicle � is secure

no conflicting assertions in 
consistant instances



Temporal Planning
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TemPlan(�,⌃)
Flaws  set of flaws of �
if Flaws=; then return �
arbitrarily select f 2 Flaws

Resolvers  set of resolvers of f
if Resolvers=; then return failure

nondeterministically choose ⇢ 2 Resolvers

� Transform(�, ⇢)
Templan(�,⌃)

Combines in CSP-based approach 
‣ task decomposition planning 
‣ plan-space planning  
‣ temporal planning



Resolvers for flaws
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Resolver for a nonrefined task in �:
an instance m of a method applicable to the task s.t. all the

constraints of m are consistent with those of �.

Transforming � = (A,ST , T , C) with resolver m:

• replace in A the task by the subtasks and actions of m

• add the assertions of m and those of the primitives in m
either to ST if these assertions are causally supported

or to T
• add to C the constraints of m and those of its actions.

ts

loc(r1)=dock1 
top(pile-ship1)=c1

docked(ship1)=dock3

te

bring(r, c1, dock4) 

loc(r1)=dock1



Resolvers for flaws
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Nonsupported assertions in � = (A,ST , T , C): those initially

in �0 plus those from the refinement of tasks and the insertion

of actions

Di↵erent ways to support an assertion ↵ 2 T :

• add in C constraints on object and temporal variables

• add a persistence assertion in ST

• add in A a task or an action that brings an assertion

supporting ↵
loc4

time

lo
c(
r1
)

loc3

t1 t2 t3 t4

loc1



Resolvers for flaws

35

lo
c(

r)

loc

t1 t2t3 t4

l’

r=r1
l

Flaws due to conflicting assertions handled incrementally

by maintaining � a secure chronicle:

• Detect possible conflicts for each new assertion in �

• Find sets of separation constraints consistent

with the constraints in current �

• Add separation constraints to �



Search Space
‣ Planning search space:  a directed graph  

• Node: a chronicle φ 

• Edge (φ, φ’): φ’=Transform(φ, ρ), ρ resolver for flaw in φ

• Acyclic graph 

• Not necessarily finite 
‣ Heuristics 

• Flaw with smallest numbers of resolvers (as in variable-ordering) 

• Resolver the least constraining to current φ (as in value-ordering) 

• Elaborate heuristics based on  domain transition graphs and 
reachability graphs 

‣ Critical operation: maintain consistency of C
36



Outline
✓ Introduction 
✓ Representation 
✓ Temporal planning 
‣ Consistency and controllability 

• Object constraints 

• Temporal constraint 

• Controllability of an STNU 
‣ Acting with executable primitives 
‣ Acting with atemporal refinement 
‣ Conclusion

37



Consistency
‣ Object constraints maintained by Templan 

l ≠ loc2, l ∈ {loc3, loc4} 
r = r1, o ≠ o’
loc(r) ≠ l’ 

‣ Temporal constraints maintained by Templan 
a < t
t < t’
a ≤ t − t ≤ b

‣ Possibly coupled constraints    
t < f(l, r) 

=> Assume no coupled constraint

38



Object Constraint
‣ Unary and binary constraints on object variables  

due to binding and separation constraints and rigid relations  
‣ Corresponds to maintaining the consistency of a general CSP 

over finite domains => NP-complete problem   
‣ Incremental arc or path consistency algorithms 

• Not complete, but efficient trade-off for filtering inconsistent 
instances 

• Do not reduce the completeness of the algorithm, just prune 
fewer nodes in search tree 

‣ Combined with complete algorithms, e.g., forward-checking on the 
free variables remaining in the final plan

39



Temporal Constraints
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‣ Simple temporal networks (STN) 
a   ≤  tj – ti  ≤   b 

notation rij = [a,b]      
entails   rji = [-b,-a]

t2

[1, 2]

[1, 2]

t1 t4

t3

t5

[3, 4]

[6, 7] [4, 5]

[1, 7]

STN 

‣ Incrementally synthesized by Templan starting from φ0 

‣ Incrementally instantiated at acting time 
‣ Maintained consistent throughout planning and acting



Temporal Constraints
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‣ Simple temporal networks (STN) 
a   ≤  tj – ti  ≤   b 

notation rij = [a,b]      
entails   rji = [-b,-a]

r12 • r23

r12 ∩ r’12

Conditions Propagated constraint

t1
[a,b]����! t2 , t2

[a0
,b

0]�����! t3 t1
[a+a

0
,b+b

0]��������! t3

t1
[a,b]����! t2 , t1

[a0
,b

0]�����! t2 t1
[max{a,a0},min{b,b0}]���������������! t2

‣ Constraint propagation rules

t2

[1, 2]

[1, 2]

t1 t4

t3

t5

[3, 4]

[6, 7] [4, 5]

[1, 7]––––[4, 6]

[2, 4]

[5, 8]––––[4, 6]



Temporal Constraints
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172 Chapter 4

Three constraints ,r
ik

, r
kj

, and r
ij

are consistent when r
ij

\ (r
ik

• r
kj

) 6= ?.

Figure 4.6: A simple temporal network

Example 4.19. Consider the network in Figure 4.6 where vertices are time
points and edges are labelled with temporal constraints: r

12

= [1, 2], r
2,3

=
[3, 4] and r

13

= [2, 3]. r
12

and r
2,3

entail by transitivity r0
13

= r
12

•r
23

= [4, 6].
But r0

13

is not compatible with r
13

: the upper bound of r
13

is 3, smaller
than the lower bound of r0

13

which is 4. That is r
13

\ r0
13

= ?. There is
no pair of variables t

1

, t
3

that can meet both r
13

and r0
13

: this network is
inconsistent.

The path-consistency algorithm PC (Algorithm 4.2) tests all triples of
variables in V with a transitive update operation: r

ij

 r
ij

\ (r
ik

• r
kj

).
If a pair (t

i

, t
j

) is not constrained, then we take r
ij

= (�1,+1); in that
sense, an STN corresponds implicitly to a complete graph.

PC(V, E)
for each k : 1  k  n do

for each pair i, j : 1  i < j  n, i 6= k, j 6= k do
r
ij

 r
ij

\ [r
ik

• r
kj

]
if r

ij

= ? then return inconsistent

Algorithm 4.2: Path consistency algorithm for simple constraint networks

Algorithm PC is complete and returns the minimal network. It has a
complexity on O(n3). It is easily transformed into an incremental version.
Assume that the current network (V, E) is consistent and minimal; a new
constraint r0

ij

is inconsistent with (V, E) if and only if r
ij

\ r0
ij

= ?. Fur-
thermore, when r

ij

✓ r0
ij

the new constraint does not change the minimal
network (V, E). Otherwise r

ij

is updated as r
ij

\ r0
ij

and propagated over
all constraints r

ik

and r
kj

with the transitive update operation; any change
is subsequently propagated. Incremental path consistency is in O(1) for
consistency checking and in O(n2) for updating a minimal network.

Manuscript of Automated Planning and Acting,

c� 2016 by Malik Ghallab, Dana Nau,

and Paolo Traverso. To be published 2016 by Cambridge University Press. Personal use

only. Not for distribution. Do not post. Please link to http://www.laas.fr/planning

Path consistency algorithm

‣ Algorithm complete 
‣ Returns a minimal network when consistent 
‣ Complexity in time O(n3), incremental update in O(n2)



Controllability
‣ Controllable vs contingent time points 

• t1 and t3 : controllable 

• t2 and t4 : contingent 
random variables that are known 
to  satisfy some constraints 

‣ PC cannot be allowed to constrain a  
contingent time point 

‣ Even if minimal network does not  constrain any contingent time 
point the corresponding plan may not be feasible

43

t1

t3

t2

t4

[30, 50]

[5, 10]

bring&move

uncover



Controllability
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t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

bring&move

uncover

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

[15, 50] [0
, 1

5]

[25,55]

d

d’

minimal network

d� d0 � 5  t3
t3  d� d0 + 5

) 40  t3  25 !!
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observe t
assign t0 at any moment after t in [0, 5]
assign t3 10 units after t0

t’

t3

t2

t4

[15, 20]

[5, 10]

[-5, 5]

t1 t[15, 25] [0, 5]
move

uncover

bring



Dynamic Controllability
‣ Simple temporal network with uncertainty (STNU) 

• Controllable and contingent time points 

• Constraints, as in STN, controllable and contingent 

‣ Controllable STNU: there exist values for controllable points that 
meets all constraints  

• Strong controllability: solution works for all possible values of 
contingent points in their predicted intervals 

• Weak controllability: solution as a function of the values of 
contingent points, if known in advance 

• Dynamic controllability: solution that is built dynamically, for each 
controllable point given the observation of past contingent points

46



Dynamic Controllability
‣ A dynamic execution strategy for an STNU: 

online procedure for assigning, in some order, a value to each 
controllable point t, (i.e., triggering commands at right moment) 

• such that all controllable constraints are met, and  

• given that the values of all contingent variables preceding t are 

known and fit their assumed constraints 

‣ An STNU is dynamically controllable if there exists a dynamic 
execution strategy for it 

‣ Assigning a value to controllable t = triggering a command
47
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observe t
assign t0 at any moment after t in [0, 5]
assign t3 10 units after t0

t’

t3

t2

t4

[15, 20]

[5, 10]

[-5, 5]

t1 t[15, 25] [0, 5]
move

uncover

bring



Checking dynamic controllability of an STNU

‣ For a chronicle φ = (A,ST,T,C) temporal constraints in C 

correspond to an STNU 

‣ TemPlan: maintains incrementally STNU dynamically controllable 

• If Path Consistency reduces a contingent constraint  
=> not dynamically controllable 

• Otherwise: test of dynamic controllability as an extension of 
Path Consistency with additional constraint propagation rules

49
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ts te

t

[a, b]

[p, q] [u, v]

if u < 0 and v � 0 then

t should wait until either ts + b� v
or te occurs

hte, b� vi

a0 = a� u, b0 = b� v
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Table 4.1: Constraint propagation rules for dynamic controllability, where
a0 = a � u, b0 = b � v, double arrows are contingent constraints and ht,↵i
are wait constraints.

adds a lower bound constraint to a wait, which follows directly from the
above argument. The last two rules correspond to transitive propagations
of a wait.

It can be shown that a modified path consistency algorithm relying on
these rules is correct: a network is dynamically controllable i↵ it is ac-
cepted by the algorithm. Furthermore, the reduced controllable constraints
obtained in the final network give a dynamic execution strategy. The trans-
position of the wait constraints as a distance graph allows the incremental
testing of dynamic controllability with a an algorithm in O(n3) inspired from
Bellman-Ford.

Synthesis of dynamically controllable plans. From the preceding dis-
cussion, it is clear that the conditions in Definition 4.16 are not su�cient.
We need to add a fourth requirement that the temporal constraints in chron-
icle � define a dynamically controllable STNU. This requirement has to be
taken into account in TemPlan as follows: dynamic controllability is checked
whenever a resolver adds to current � a contingent constraints; that resolver
is rejected if the resulting STNU is not dynamically controllable.

This strategy can however be very demanding in computational re-
sources. Indeed, the complexity growth of dynamic controllability checking
is polynomial, but the constant factor is high. A possible compromise is to
maintain solely the pseudo-controllability of �. The standard PC algorithm
already tests that a network is pseudo-controllable (no contingent constraint
should be reduced during propagation), a necessary condition for dynamic
controllability. Hence consistency checking allows to filter out incrementally
resolvers that make the STNU not pseudo-controllable. Dynamic control-

Draft, not for distribution. January 26, 2016.

Constraint propagation rules
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154 Chapter 4

A task is refined into subtasks and primitives using refinement methods.
A temporal refinement method is a tuple (head, task, refinement, T , C),
where head is the name and arguments of the methods, task gives the task
to which the method applies, refinement is the set of temporally qualified
subtasks and primitives in which it refines task, T are assertions and C con-
straints on temporal and object variables. A temporal refinement method
does not need a separate precondition field, as in the methods of previ-
ous chapter. This is because temporal assertions may express conditions as
well as e↵ects in a flexible way, at di↵erent moments. Temporal refinement
methods are illustrated in the following example.

1

move 

t3

t1

t2

ts

uncover

pile(c)=p’ 
cargo(r)=nil

load

move 

unload

t4 t6t5 t7 te

Figure 4.3: Assertions, actions and subtasks of a refinement method for the
bring task (arrows represent precedence constraints).

Example 4.12. Let us further develop the domain in Example 4.11 by
specifying a few tasks as temporal refinement methods. The task of bringing
containers to destination piles can be broken into the following tasks: bring,
move, uncover, load and unload. Some of the methods for performing these
tasks are the following:

Draft, not for distribution. November 25, 2015.

t2

navigate(r1)leave(r1,d1)

stack(k,c’)unstack(k,c’)

putdown(k,c1,r1)unstack(k,c1)

leave(r2,d2)

enter(r1,d2)

leave(r1,d2)

t1

t3

t4

t5

t6

t7 t9t8

Problem 
‣ Given a dynamically controllable plan with executable primitives 
‣ Trigger corresponding commands from online observations
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Plan grounded in realtime: when constrained w.r.t.

absolute bounds or when execution starts

• Future point t is bounded with absolute bounds [lt, ut]

• Past point is instantiated

A controllable time point t that remains in the future

• t is alive if the current time now 2 [lt, ut]

• t is enabled if

• t is alive,

• for every precedence constraint t0 < t,
t0 has occurred, and

• for every wait constraint hte,↵i,
either te has occurred or ↵ has expired
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Dispatch(plan)
initialize the network

while there are controllable points that have not occurred do

update now

update contingent points that have been observed

enabled  set of enabled points

for every t 2 enabled such that now= ut do

trigger t
arbitrarily choose other points in enabled ; trigger them

propagate in the network the values of triggered points

‣ Temporal monitoring



Observation Actions
‣ Assumption: all occurrences of contingent events are observable 

• Observation needed for dynamic controllability 

• In general not all events are observable  
‣ Refining STNU into POSTNU

55

    Controllable 
Timepoints    Invisible     
    Contingent 
     Observable 

‣ Is POSTNU dynamically controllable ?



t’

t3

t2

t4

[20, 25]

[25, 30]

[-5, 10]

t1 t [1, 2]
driving

cooking

working

t0
[19:00, 19:30]

Observation Actions
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Controllable 

Contingent Invisible 
observable{



Observation Actions
‣ POSTNU dynamically controllable if there exists an execution 

strategy that chooses future controllable points to meet all the 
contraints, given the observation of past visible points 

‣ Observable ≠ visible 

• Observable means  it will be known when observed 

• It can be temporarily hidden
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   Controllable 
Timepoints        Invisible 
   Contingent    Visible 
         Observable

Hidden
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Atemporal Refinement of Primitive Actions
‣ Planning primitives are compound tasks at the acting level  
‣ Refined into commands with refinement methods in RAE

59

leave(r, d, w)
assertions: [ts, te]loc(r):(d, w)

[ts, te]occupant(d):(r, empty)

constraints: te  ts + �1
adjacent(d, w)

m-leave(r, d, w, e)
task: leave(r, d, w)
pre: loc(r)=d, adjacent(d, w), exit(e, d, w)

body: until empty(e) wait(1)
goto(r, e)

Operational 
model

Descriptive 
model



Atemporal Refinement of Primitive Actions
‣ Planning primitives are compound tasks at the acting level  
‣ Refined into commands with refinement methods in RAE

60

Operational 
model

m-unstack(k, c, p)
task: unstack(k, c, p)
pre: pos(c)=p, top(p)=c, grip(k)=empty

attached(k, d), attached(p, d)
body: locate-grasp-position(k, c, p)

move-to-grasp-position(k, c, p)
grasp(k, c, p)
until firm-grasp(k, c, p) ensure-grasp(k, c, p)
lift-vertically(k, c, p)
move-to-neutral-position(k, c, p)



Atemporal Refinement
‣ Pros 

• Simple online refinement with RAE 

• Avoids breaking down uncertainty of contingent duration 

• Can be augmented with temporal monitoring functions in RAE 
e.g., watchdogs, methods with duration preferences 

‣ Cons 

• Does not handle temporal requirements at the command level, 
e.g., concurrency synchronization
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Summary
‣ Rich chronicle representation with temporal refinement 

‣ Planning with chronicle refinement 

‣ Consistency and controllability 

‣ Acting with chronicle dispatching and refinement

62

• ANML modeling language 

• FAPE Acting and Planning Environment



Conclusion

‣ Temporal models enrich descriptive and operational models of 

actions 

‣ Chronicle-based approach very flexible for integrating generative 

and task decomposition techniques  

‣ Acting refinement methods can be extended to integrate temporal 

construct of chronicles
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action goto (robots r, docks to){
  constant  docks from;
  constant waypoints wa, wb ;
   [start] r.loc == from ;
  :decomposition {from == to ; };
  :decomposition {from != to ;
    adjacent(from, wa) ;
    adjacent(to, wb) ;
    [all] contains {
      s1 : leave(r, from, wa) ;
      s2: navigate(r, wa, wb) ;
      s3 : enter(r, to, wb) ;};
    end(s1) <= start(s2);
    end(s2) <= start(s3);};
};

action uncover (containers c, piles p){
  [start] c.in == p ;
  :decomposition {[all] p.top == c ; };
  :decomposition {
    constant (…) ;
    [start] p.top == prevtop ;
    p != otherp;  c != prevtop ;
    k.attached == d; p.ondock == d ;
    otherp.ondock ==d ;
    [all] p.available == true ;
    [all]  otherp.available == true ;
    [all] contains {
    s1 : unstack(k,prevtop,p) ;
    s2: stack(k,prevtop,otherp);
    s3: uncover(c,p) ;};
    end(s1) <= start(s2);
    end(s2) <= start(s3); };
};

Example: dwr



Example: search tree
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Example: plan found


