MoSAIC Evaluation

LAAS-CNRS

GSPN Model for (k,n) Erasure Code

Probability of data loss

- $\operatorname{PL}(\mathrm{k}, \mathrm{n})$: probability of data being lost
- Without MoSAIC

$$
P L(0,0)=\frac{\lambda}{\lambda+\beta}
$$

- With MoSAIC

$$
P L(1,1)=\frac{\lambda}{\lambda+\beta+\alpha}+\frac{\alpha}{\lambda+\beta+\alpha}\left(\frac{\lambda}{\lambda+\beta}\right)^{2}
$$

$$
P L(1,2)=\frac{\lambda}{\lambda+\beta+\alpha}+\frac{\alpha^{2}}{(\lambda+\beta+\alpha)(\lambda+2 \beta+\alpha)}\left[\frac{\lambda}{\alpha}\left(\frac{\lambda}{\lambda+\beta+\alpha}+\frac{\lambda}{\lambda+\beta}\right)+\frac{\lambda \alpha}{\lambda+\beta+\alpha}\left(\frac{\lambda}{\lambda+\beta}\right)^{2}+\alpha\left(\frac{\lambda}{\lambda+\beta}\right)^{3}\right]
$$

MoSAIC - replication (k=1)

Loss probability improvement

- Let IPL(k,n)=PL(0,0)/PL(k,n) : reduction in probability of data being lost provided by MoSAIC

$$
\begin{aligned}
\operatorname{IPL}(1,1)= & {\left[\left(\frac{\lambda}{\lambda+\beta+\alpha}+\frac{\alpha}{\lambda+\beta+\alpha}\left(\frac{\lambda}{\lambda+\beta}\right)^{2}\right) \times\left(\frac{\lambda+\beta}{\lambda}\right)\right]^{-1} } \\
= & {\left[\frac{\lambda+\beta}{\lambda+\beta+\alpha}+\frac{\alpha}{\lambda+\beta+\alpha}\left(\frac{\lambda}{\lambda+\beta}\right)\right]^{-1} } \\
= & {\left[\frac{\lambda / \beta+1}{\lambda / \beta+1+\alpha / \beta}+\frac{\alpha / \beta}{\lambda / \beta+1+\alpha / \beta}\left(\frac{\lambda / \beta}{1+\lambda / \beta}\right)\right]^{-1} } \\
& \lim _{\lambda / \beta \rightarrow 0}(\operatorname{IPL}(1,1))=\left(\frac{1}{1+\alpha / \beta}\right)^{-1}=1+\alpha / \beta
\end{aligned}
$$

- Conjecture that (can demonstrate via Markov graph approximation): $\forall n, \lim _{\lambda / \beta \rightarrow 0}(\operatorname{IPL}(1, n))=1+\frac{\alpha}{\beta}$

MoSAIC - replication ($k=1$)

MoSAIC - replication ($k=1$)

IPL limit for large α

- Consider case of $\alpha \rightarrow \infty$
- Change of variable: $\alpha / \beta=(\alpha / \lambda)(\lambda / \beta)$

$$
\begin{aligned}
\operatorname{IPL}(1,1)= & {\left[\frac{\lambda / \beta+1}{\lambda / \beta+1+(\alpha / \lambda)(\lambda / \beta)}+\frac{(\alpha / \lambda)(\lambda / \beta)}{\lambda / \beta+1+(\alpha / \lambda)(\lambda / \beta)}\left(\frac{\lambda / \beta}{1+\lambda / \beta}\right)\right]^{-1} } \\
= & {\left[\frac{(\lambda / \alpha)(\lambda / \beta+1)}{(\lambda / \alpha)(\lambda / \beta)+\lambda / \alpha+\lambda / \beta}+\frac{(\lambda / \beta)}{(\lambda / \alpha)(\lambda / \beta)+\lambda / \alpha+\lambda / \beta}\left(\frac{\lambda / \beta}{1+\lambda / \beta}\right)\right]^{-1} } \\
& \lim _{\lambda / \alpha \rightarrow 0} \operatorname{IPL}(1,1)=\left(\frac{\lambda / \beta}{1+\lambda / \beta}\right)^{-1}=\left(\frac{1+\lambda / \beta}{\lambda / \beta}\right)=\left(1+\frac{\beta}{\lambda}\right)
\end{aligned}
$$

- Conjecture that (can demonstrate via Markov graph approximation):

$$
\lim _{\lambda / \alpha \rightarrow 0} \operatorname{IPL}(1, n)=\left(1+\frac{\beta}{\lambda}\right)^{n}
$$

MoSAIC - replication ($k=1$)

Preliminary conclusions

- Have shown limiting expressions for pure replication:

$$
\begin{gathered}
\forall n, \lim _{\lambda / \beta \rightarrow 0}(I P L(1, n))=1+\frac{\alpha}{\beta} \\
\lim _{\lambda / \alpha \rightarrow 0} I P L(1, n)=\left(1+\frac{\beta}{\lambda}\right)^{n}
\end{gathered}
$$

- Future work:
- study k>1
- consider $\lambda_{\text {contributor }}>\lambda_{\text {owner }}$ (contributors may be malicious)
- take into account energy and other resource limitations

