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Abstract

Storage capacity, like computing power, follows its Moore’s law and grows dramat-
ically. Consequently, the need for data backup services increases. The domain of
data backup was recently hit by the peer-to-peer wave: several projects propose to
use a cooperative approach to the backup problem. In this paper we survey these
projects, the various problems they face and the techniques they propose to tackle
them.
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1 Introduction and Motivations

Storage capacity, like computing power, follows its Moore’s law and grows
dramatically, for instance disk density grows at an impressive annual rate of
100% [1]. At the same time, this new storage capacity is consumed by the
production of new data. Consequently, the need for backup capacity increases
but so does the space available for backup.

Our concern here is on cooperative backup services, in which resources belong-
ing to multiple users are pooled as a distributed storage system for backing-up
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File type Writer multiplicity Reader multiplicity

File sharing systems Static Single Multiple

File backup systems Static Single Single

General file systems Dynamic Multiple Multiple

Fig. 1. Typical characteristics distinguishing various distributed storage

each others’ data. Such a cooperative backup service must be distinguished
from other forms of distributed storage such as file sharing systems or general
file systems.

A file system can be defined as a support for the storage of data on non-volatile
medium, typically a hard disk. Data is stored on files that encompass both
the data and its associated metadata (name and other attributes such as date
of modification, etc.). Usually a file system also provides a directory service
on top of a flat file service. The flat file service maps the data with unique
file identifiers and stores the data on the storage device. The organization
of the data can have several forms, either unstructured or structured as a
sequence or hierarchy of records. The directory service maps the metadata to
the files’ unique identifiers. Typically this mapping is stored on the storage
device using the flat-file service itself. There is a number of distributed file
systems, the most famous being NFS (Network File System) that is used on
many UNIX networks.

File sharing 1 emerged relatively recently as an Internet application and greatly
participated to the definition of a new type of distributed system: peer-to-peer
systems. The goal of a file sharing system is to enable multiple users to ac-
cess files. Classical and well-known file-sharing systems are Napster, eDonkey,
Gnutella, Kazaa, MojoNation, BitTorrent, etc.

The role of a backup system is to tolerate faults affecting some storage device,
be it local or distant, centralized or shared. The type of faults considered here
can be permanent failures of the storage devices (e.g., crashed disks), or even
localized catastrophes like a fire incident in an office when the backup media
are taken off-site.

Given these definitions, one can see that there are quite some differences in
the specification of these services even if there are also some strong similarities
(primary goal is storage, the concept of file, etc.). If one wants more specific
differences, one can consider the following properties: multiplicity of the data
readers/writers and mutability of the content. The following table presents
these characteristics.

1 We differentiate here between peer-to-peer file sharing systems and distributed
file systems that can also be seen as a way to share files.
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Among the afore-mentioned file-sharing systems, we can identify some features
that are centralized, distributed or cooperative. Similarly to file systems, file-
sharing systems have two main functions: first they have to manage the actual
distribution of the shared files, and second they have to organize the lookup,
i.e. manage a global directory for users to search for given files. The lookup
service of Napster [2] is centralized, the one of eDonkey [3] is distributed among
a set of servers and finally, the one of Kademlia [4] is cooperatively realized
between the participating nodes.

It is clear that file-sharing systems are different from backup systems. These
systems do not guarantee long-term survivability of files, especially those files
that few users are interested in storing or accessing. Thus, they could hardly
be used for the purpose of backup. One could argue that regular file systems
could easily be used for such a purpose since long-term survivability and fault-
tolerance are very important concerns for this type of service. For instance,
a simple solution to back-up on top of file systems would be to use Unix-like
facilities, e.g., tar, CVS, etc. However, the specification and the semantics
of file systems being so much broader than those of backup systems (multi-
writers vs. single-writers; read-write vs. write-once/read-many), it would be
unfair to compare these two types of system.

In this paper we will survey only backup services that use a cooperative ap-
proach. We will be concerned both with cooperation between resources pooled
directly over a fixed infrastructure such as Internet and with mobile resources
that are pooled opportunistically according to locality. This latter class of co-
operative backup service is motivated by the observation that users of mobile
devices (laptops, personal digital assistants, mobile phones, etc.) often per-
form a backup of their data only when they have access to their main desktop
machine, by synchronizing the two machines. Typically, the first generation of
personal digital assistants (PDAs) had only a short distance communication
means, generally a serial or infrared device. This meant that the user had to be
physically close to the machine on which she performed the synchronization.
Nowadays, portable devices usually have several communication interfaces (for
instance WiFi, Bluetooth, etc.). When a network infrastructure is available in
their vicinity, for instance WiFi access points, those devices could connect
to their main desktop machine in order to back-up their data. However, in
practice, this is rarely the case, for several reasons :

• the desktop machine must be running, connected to the Internet and avail-
able;

• access to a network infrastructure using wireless communications is still rare
and expensive, and it can take a while before a device is able to connect to
the Internet;

• finally, to our knowledge, the software able to perform such a backup on a
remote desktop are still rare.
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Another solution to mobile device backup is the use of a trusted third party
that guarantees its backup servers’ availability. Several commercial offerings
enable their customers to back-up their data on a limited storage capacity for
a yearly fee.

However, the growth rate of this kind of wireless communicating devices is such
that a cooperative approach to back-up is becoming feasible, based on peer-
to-peer interactions. These wireless interactions are frequent but ephemeral.
Nevertheless, they could be leveraged: whenever two devices meet, a backup
service can automatically initiate a request for a partial data backup. As a
counterpart, it has to offer the same service to the community, i.e. to form a
cooperative backup system. In Section 2 of this survey, we discuss the features
that characterize cooperative backup systems. Several existing systems are
then described and compared briefly in Section 3. In Section 4, a more in-depth
analysis is given with respect to storage management issues. Then Section 5
focuses on the dependability techniques used in these systems. Finally, Section
6 concludes the survey by a summary and sketches some directions for future
work.

2 Characterization of Cooperative Backup Systems

In [5], Chervenak et al. described a number of features for the characteriza-
tion of backup systems: full vs. incremental, file-based vs. device-based, on-
line or not, snapshots and copy-on-write, concurrent backups, compression,
file restoration, tape management, and finally disaster recovery. On the one
hand, most of these features remain of interest in our context. However, on the
other hand, some characteristics concerning dependability and the cooperative
nature of the considered systems were not addressed: privacy, denial-of-service
resilience, trustworthiness management, etc. In their survey, Chervenak et al.
characterized backup systems using a set of properties. It must be noted that
their focus was on centralized or server-based, system-wide, backup systems,
i.e., the target was large multi-user client systems. The type of backup services
we are interested in targets personal computers and thus, some of the prop-
erties defined by Chervenak et al. are not relevant. We thus propose another
characterization of backup systems based on a set of functionalities and of
dependability issues, as described in the following sections.

4



2.1 Functionalities of Backup Systems

2.1.1 Full vs. Incremental Backups

The simplest solution to back-up a file-system is to copy its entire content to
a backup device. The resulting archive is called a full backup or a snapshot
of the source data. Both a full file-system and a single lost file can be easily
restored from such a full backup. However, this solution has usually two major
drawbacks: since it concerns the entire content of the file-system, it is slow and
requires a large amount of backup storage space. We will come back onto this
issue of resource usage in the next subsection.

As a solution to this, incremental backup schemes can be used. They copy only
the data that have been created (added) or modified since a previous backup.
To restore the latest revision of a given file, the first full backup along with all
the subsequent incremental backups must be read, which can be extremely
slow. For this reason, typical incremental schemes perform occasional full
backups supplemented with frequent incremental backups. Several variations
of incremental backup techniques exist: incremental-only, full+incremental or
even continuous incremental where newly created or modified data is backed-
up within a few minutes, as it is created or modified, instead of once a day,
typically, with traditional incremental backups.

2.1.2 Resource Usage

To reduce both storage requirements and network bandwidth usage, backup
systems can use classic compression techniques. This can be done at the client-
side or at the server-side. Recently, other techniques emerged to reduce the
storage space required to back-up several file systems. An example is single-
instance storage [6] which aims to store once every block of data even if it is
present on the file systems of several users, or if there are multiple instances
in a single file-system.

2.1.3 Performance

Backup system performance is measured in terms of the backup time as well
as the restoration time. The performance of the backup process is impacted
by factors such as incremental backups, compression, etc. Several parameters
and features have a dramatic effect on the actual efficiency of the restoration
operations. For instance, restoration will be slower in an incremental backup
system, which must begin with the last full backup and apply changes from
subsequent incremental backups. An additional concern when restoring an
entire file system is that files deleted since the previous backup will reappear
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in the restored file system. More generally, the unbacked-up changes on the
metadata, the structure and the hierarchy of the file system cannot be restored.

It is important to note that scalability is a very important issue when dealing
with cooperative systems. The number of nodes participating in the cooper-
ative system can be potentially very large and this raises a number of issues
and problems to be dealt with. An important metric for cooperative backup
system is thus the number of nodes that the system can accomodate.

2.1.4 On-line Backups

While many backup systems require that the file system (or the files) remain
quiescent during a backup operation, on-line or active backup systems allow
users to continue accessing files during backup. On-line backup systems offer
higher availability at the price of introducing consistency problems.

The most serious problems occur when directories are moved during a backup
operation, changing the file system hierarchy. Other problems include file
transformations, deletions and modifications during backup. In essence, any
type of write operation on the files or on the file-system hierarchy during a
backup is a potential source of problems. There are several possible strategies
to overcome these problems:

(1) Locking limits the availability of the system by forbidding write accesses
while backing-up.

(2) Modification detection is used to reschedule a backup of the modified
structures/files.

(3) Snapshots, i.e., frozen, read-only copies of the current state of the file-
system offer another alternative for online backup. The contents of a
snapshot may be backed-up without danger of the file system being mod-
ified from subsequent accesses. The system can maintain a number of
snapshots, providing access to earlier versions of files and directories.

(4) A copy-on-write scheme is often used along with snapshots. Once a snap-
shot has been created, any subsequent modifications to files or directories
are applied to newly created copies of the original data. Blocks or file seg-
ments are copied only if they are modified, which conserves disk space.

2.2 Dependability and Other Orthogonal Issues of Cooperative Backup Sys-
tems

In the previous section we presented several functional aspects of backup sys-
tems. We now look at the orthogonal issues raised by a cooperative approach
to backup: integrity and consistency, confidentiality and privacy, availability,
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synergy and trust.

2.2.1 Integrity and Consistency

A backup service has to guarantee the integrity and consistency of restored
data.

Any corruption of the backed up data, be it intentional or not (for instance
due to a software or hardware fault on the system actually providing the
storage), must be detected by its owner during restoration. Network protocols
as well as storage devices commonly use error-detecting or correcting codes to
tolerate software and hardware faults. However, to be resilient to intentional
corruption, the data owner must be assured that the data restored is the same
that which was backed up.

Consistency is an issue when multiple items of data must ensure some common
semantics. In such cases, special care must be taken to manage dependencies.

2.2.2 Confidentiality and Privacy

The entities participating in a cooperative backup service store some of their
data on the resources of other participants with whom they have no a priori
trust relationship. The data backed up may be private and thus should not be
readable by any participating entity other than its owner, i.e., the service has
to ensure the confidentiality of the data. Furthermore, a cooperative backup
service must protect the privacy of its users. For instance it should not deliver
any information concerning the past or present location of its users.

2.2.3 Availability

In a backup system, availability has several dimensions. First, the primary
goal of a backup system is to guarantee the long-term availability of the data
being backed up. In some sense it is the functional objective of the system.
Second, to be useful, the backup system itself must be available, i.e., it must
be resilient to failures (hardware, software, interaction, etc.). In the context of
a cooperative approach to backup, additional concerns arise, especially with
respect to malicious or selfish denial-of-service attacks.

2.2.4 Synergy

Synergy is the desired positive effect of cooperation, i.e., that the accrued
benefits are greater than the sum of the benefits that could be achieved with-
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out cooperation. However synergy can only be achieved if nodes do indeed
cooperate rather than pursuing some individual short-term strategy, i.e. being
rationale.

Hardin introduced the tragedy of the commons concept in 1968 [7] to formalize
the fact that a shared resource (a common) is prone to exhaustion if the
resource consumers use short-term strategy to maximize their benefit out of
the resource. Consider the simple example of a grass field shared by 25 farmers.
The field can normally accommodate 50 cattle. However, each rational farmer
is tempted to maximize his outcome by having more than 2 cattle feeding
from the shared field. This short-sighted strategy eventually leads the field to
exhaustion through over-consumption. A generalized form of the problem is
when a resource market has externalities, i.e., when the cost of using a resource
is shared among its consumers.

The tragedy of the commons has recently been extended to the digital world, or
“Infosphere”, leading to the tragedy of the digital commons [8]. It is relatively
intuitive, for instance, to regard the Internet as a shared resource. Each user
uses his connection without paying much attention to the presence of other
users and to the fact that they share a common bandwidth. Each user thus
uses his available bandwidth up to its maximum, only being reminded that
other users also consume this resource when there is a network congestion.

One way to ensure synergy in a cooperative backup system is to enforce the
“fair exchange” property: if one contributes up to 5 MiB to the system, one
wants to get serviced up to 5 MiB too. Reciprocally, it is desirable that a
device getting serviced for such an amount of resources offers an equivalent
amount to the cooperative service.

2.2.5 Trust Management

An important aspect of many cooperative systems is that each node has to
interact with unknown nodes with which it does not have a pre-existing trust
relationships. The implementation of a cooperative backup service between
nodes with no prior trust relationship is far from trivial since new threats
must be considered:

(1) selfish devices may refuse to cooperate;
(2) backup repository devices may themselves fail or attack the confidential-

ity or integrity of the backup data;
(3) rogue devices may seek to deny service to peer devices by flooding them

with fake backup requests; etc.

There is thus a need for trust management mechanisms to support cooperative
services between mutually suspicious devices.

8



3 Existing Cooperative Backup Systems

In this section, we first give a preliminary description and analysis of various
systems devoted to cooperative backup. Cooperative backup are inspired by
both cooperative file systems and file sharing systems. Most are concerned
with the problem of cooperative backup for fixed nodes with a permanent
Internet connection. To our knowledge, there are only two projects looking
at backup for portable devices with only intermittent access to the Internet:
FlashBack [9] and MoSAIC [10].

3.1 Peer-to-peer Backup Systems for WANs/LANs

The earliest work describing a backup system between peers is the one of
Elnikety et al. [11], which we will henceforth refer to as CBS. Regarding the
functions of a backup system (resource localization, data redundancy, data
restoration), this system is quite simple. First, a centralized server is used to
find partners. Second, incremental backup, resource preservation, performance
optimization were not addressed. However, various types of attacks against the
system are described. We will come back to this later.

The Pastiche [12] system and its follow-up Samsara [13], are more complete.
The resource discovery, storage, data localization mechanisms that are pro-
posed are totally decentralized. Each newcomer chooses a set of partners based
on various criteria, such as communication latency, and then deals directly
with them. There are mechanisms to minimize the amount of data exchange
during subsequent backups. Samsara also tries to deal with the fair exchange
problem and to be resilient to denial-of-service attacks.

Other projects try to solve some limitations of the Pastiche/Samsara systems,
or to propose some simpler alternatives. This is the case for Venti-DHash [14]
for instance, based on the Venti archival system [6] of the Plan 9 operating
system. Whereas Pastiche selects at startup a limited set of partners, Venti-
DHash uses a completely distributed storage among all the participants, as in
a peer-to-peer file sharing system.

PeerStore [15] uses a hybrid approach to data localization and storage where
each participant deals in priority with a selection of partners (like Pastiche).
Additionally, it is able to perform incremental backup for only new or re-
cently modified data. Finally, pStore [16] and ABS [17], which are inspired by
versioning systems, propose a better resource usage.

Based on the observations that worms, viruses and the like can only attack
machines running a given set of programs, the Phoenix system [18] focuses on
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techniques favoring diversity among software installations when backing up a
machine (e.g., trying to not backup a machine that runs a given vulnerable
web server on a machine that runs the same web server). The main added
value is here in the partnership selection.

In [19], the authors focus on the specific issue of resource allocation in a
cooperative backup system through an auction mechanism called bid trading.
A local site wishing to make a backup announces how much remote space is
needed, and accepts bids for how much of its own space the local site must
“pay” to acquire that remote space.

In [20], the authors implement a distributed backup system, called DIBS, for
local area networks where nodes are assumed to be trusted: the system ensures
only privacy of the backed up data but does not consider malicious attacks
against the service. Since DIBS targets LANs, all the participating nodes
are known a priori, partnerships do not evolve, and no trust management is
needed.

3.2 Cooperative File Systems

As mentioned earlier, a backup system (static data files, single writer) can
be implemented on top of any file system (mutable data files, multi-writer).
There exist a number of peer-to-peer general file systems such as Ivy [21],
OceanStore [22], InterMemory [23], Us [24], etc. We briefly present here two
of them for the sake of the comparison although they are outside the scope of
this survey.

Us [24] provides a virtual hard drive: using a peer-to-peer architecture, it offers
a read-only data block storage interface. On top of Us, UsFs builds a virtual
file system interface able to provide a cooperative backup service. However,
as a full-blown filesystem, UsFs provides more facilities than a simple backup
service. In particular, it must manage concurrent write access, which is much
more difficult to implement in an efficient way.

OceanStore [22] is a large project where data is stored on a set of untrusted
cooperative servers which are supposed to have a long survival time and high
speed connection. In this sense we consider it as a distributed file system using
a super-peers approach rather than a purely cooperative system. The notion
of super-peers relates to the fact that peers are specifically configured as file
servers (with large amount of storage) that can cooperate to provide a resilient
service to non-peer clients.
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3.3 Mobile Systems

The FlashBack [9] cooperative backup system targets the backup of mobile
devices in a Personal Area Network (PAN). The nature of a PAN simplifies
several issues. First, the partnerships can be defined statically as the mem-
bership in the network changes rarely: the devices taking part in the network
are those that the users wear or carry. Second, all the devices participating in
the cooperative backup know each other. They can be initialized altogether at
configuration time so there is no problem of handling dynamic trust between
them. For instance, they may share a cryptographic key.

MoSAIC [10] is a cooperative backup system for communicating mobile de-
vices. Mobility introduces a number of challenges to the cooperative backup
problem. In the context of mobile devices interacting spontaneously, connec-
tions are by definition short-lived, unpredictable, and very variable in band-
width and reliability. Worse than that, a pair of peers may spontaneously
encounter and start exchanging data at one point in time and then never
meet again. Unlike FlashBack, the service has to be functional even in the
presence of mutually suspicious device users.

4 Storage Management

In this section, we present two aspects that are specific to peer-to-peer data
storage systems: mechanisms for storage allocation, and techniques for efficient
usage of resources.

4.1 Storage Allocation

Among the systems studied, one can identify three distinct approaches to the
dissemination of the data blocks to be stored:

• the storage can be allocated to specific sets of participants or partners;
• the storage can be allocated across all participants using a distributed hash

table (DHT), which has the property of ensuring an homogeneous block
distribution;

• the storage can be allocated opportunistically among neighbors met when
storage of a block is needed.

In the first case, the relationships between the partners are relatively simple:
each participant chooses a set of partners at start-up. Then, for each backup,
it directly sends the blocks to be saved to its partners. In Pastiche and in
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CBS, each participant chooses a set of partners that will remain almost static.
Finally, the FlashBack devices, in a PAN, choose their set of partners according
to the amount of time spent in each other’s vicinity.

The second approach is based on a technique that is fundamental to peer-
to-peer file sharing systems, virtual networks or overlay networks [25], which
use the notion of distributed hash tables (DHT) for allocating data blocks.
Each node of the network is responsible for the storage of the blocks whose
identifier is close (numerically) to its own identifier. The advantage of using
a DHT is that the blocks are homogeneously distributed over the network
if their identifiers are numerically homogeneously distributed. Both Venti-
DHash and pStore use DHTs to store backup data blocks. However, there are
two disadvantages to this approach:

• The cost of migration of the data blocks when a node enters or leaves the
system can be high (bandwidth-wise) [15]. Because of the mathematical
mapping between data blocks and node identifiers, no exception is accept-
able: when a node enters the virtual network, it must obtain and store all
the blocks for which it is mathematically responsible; respectively, when a
node leaves the network, the various blocks it was responsible for must be
re-distributed using the DHT mechanism.

• A DHT automatically distributes the data blocks homogeneously among the
participants, independently of how much storage space each node consumes.
Consequently, using a DHT makes it impossible for a system to ensure fair
exchange.

For these reasons, PeerStore proposes a hybrid approach where the data
blocks are directly exchanged between partners and where the blocks’ meta-
information (the mapping between a block ID and the node that stores it) are
stored using a DHT. For optimization, the set of partners is sometimes ex-
tended at runtime to nodes that were not originally in the partnership: when a
node needs to store a block, it looks into the DHT to see if the block is already
stored (single-instance storage). When that is the case, the block is not stored
twice. Instead, the node that already stores it becomes a new partner for the
node owning it.

The third approach is very different. The MoSAIC system targets mobile de-
vices, so partnerships cannot be established a priori 2 , but have to be defined
during the backup itself, opportunistically. MoSAIC is an active backup sys-
tem - whenever some critical data is modified, the modified blocks need to be
backed-up. This is done towards the devices that the user will meet along its
way. In this case, the partnership is determined at runtime and is a function

2 There may be exceptions to this in some application scenarios where mobility
patterns are known in advance. For instance, when two mobile device users take the
same train every single morning while commuting.
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of the mobility patterns of the participating nodes.

4.2 Storage Optimization

The amount of storage necessary to store backed-up data can be optimized
by applying compression techniques. Compression is worthwhile even if data
is ultimately backed-up in redundant copies (to ensure backup availability).
Indeed, the redundancy that is eliminated using compression techniques can
be seen as “accidental”, e.g., due to overly prolix data formats. Thus, com-
pression can be thought of as a way to normalize data entropy before adding
new redundancy. In other words, going through the compression step before
adding redundancy is a means to achieve controlled redundancy. In particular,
controlled redundancy means that the backup software is able to control the
distribution of redundant data.

Backup systems often rely on “traditional” stream compression techniques,
such as gzip and similar tools. Additionally, most backup systems have focused
on techniques allowing for storage and bandwidth savings when only part of
the data of interest has been modified, i.e., incremental backup techniques. Of
course, similar techniques are used by revision control systems [26] or network
file systems [27].

Incremental backup has the inherent property of reducing storage (and band-
width) usage because only changes need to be sent to cooperating peers and
stored. However, snapshot-based systems can be implemented such that they
provide storage and bandwidth efficiency comparable to that of incremental
backup systems, while still allowing for constant-time restoration. Namely,
single-instance storage is a technique that has been used to provide these
benefits to a number of backup [12,15,28], archival [6,29] and revision control
systems [26], as well as distributed file systems [27,30].

Single-instance storage consists in storing only once any given data unit. Thus,
it can be thought of as a form of compression among several data units. In
a file system, where the “data unit” is the file, this means that any given
content, even when available under several file names, will be stored only
once. The single-instance property may also be provided at a finer-grain level,
thus allowing for improved compression.

The authors of Pastiche and PeerStore argue that single-instance storage can
even be beneficial at the scale of the aggregated store made of each contrib-
utor store. In essence, they assume that a lot of data is common to several
participants, and thus argue that enforcing single-instance of this data at a
global scale can significantly improve storage efficiency.
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While common data may easily be found among participants in the context of
Pastiche and PeerStore, where each participant is expected to back up their
whole disk (i.e., including application binaries and data), this is certainly not
the general case. For example, the mobile users of MoSAIC are expected to
explicitly pay attention to their personal, critical data which are unlikely to
be shared among several participants. Consequently, single-instance storage
may be beneficial to mobile users only when used at a local scale, i.e., on each
data owner’s local store.

5 Dependability Techniques

We study, in this section, the various techniques found in the literature to
address the dependability issues presented in section 2.2.

5.1 Integrity and Consistency

Integrity and consistency are two properties that are usually obtained using
some kind of data encoding. Apart from CBS, every system studied here sys-
tematically fragments the backup files. This is necessary for load-balancing:
with small sized fragments, it is easier to adapt the placement to fairly balance
the load imposed on the participants.

pStore uses simple data structures to encode the backup files. The files are
fragmented in varying size blocks. Along with the blocks themselves, each node
also stores a list of blocks that contains, for each version of the considered file,
the list of the identifiers of its constituent blocks. Each block list is indexed
with a structure containing a cryptographic hash of the file path and the
key of its owner. There is thus one namespace per user. In practice, for the
restoration of a given file, one needs to know the file path and the key of the
owner. Without this metainformation, one cannot access the file’s block list
and consequently its blocks. The same technique is used in PeerStore, and a
similar technique in Pastiche.

In ABS, each fragment is stored along with a block of meta-information about
the file from which the block originates, as well as the position of the fragment
within the file. These data (fragment and metainformation) are indexed using
a cryptographic hash of the fragment to implement single instance storage
of each fragment. The metainformation is encrypted using the owner’s public
key and the set (fragment and metainformation) with the owner’s private key.
These signatures are used to certify ownership and for ensuring integrity of
the blocks.
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In a similar manner, Venti-DHash encoding is based on Venti. As with a
classical file system, the files are represented as trees whose leaves are the file
fragments. Here, all the blocks are indexed using their digest. They are fixed-
sized and the underlying storage middleware is not aware of their semantics
(leaf nodes, intermediary nodes, data, metadata, etc.). To be able to restore
a file, only the knowledge of the identifier of the root node is necessary.

All these techniques provide some guarantee of data block integrity since block
addressing is realized using an identifier that depends on the content of the
block (using a digest). When a block is restored, one can then check whether or
not it is the requested block and if it is correct. If the metainformation concern-
ing a file is stored using the same technique, integrity is thus also guaranteed
file-wise. However, from the user point of view, several files can have common
semantics and thus should form a consistency unit. Only Pastiche guarantees
inter-file consistency. Since it is implemented as a file system, Pastiche can cre-
ate shadow copies of the blocks being backed-up, so that they can be modified
during the backup process without compromising their consistency.

5.2 Confidentiality and Privacy

Most of the systems studied here, like many file sharing systems, use convergent
encryption [30] to provide some confidentiality despite untrustworthy partner
nodes. The objective is to have an encryption mechanism that does not depend
on the node performing the encryption, i.e., that is compatible with single-
instance-storage. Convergent encryption is a symmetric encryption technique
whose key is a digest of the block to be ciphered. The ciphered block can
then be stored on the untrustworthy partner nodes. A digest of the ciphered
block is commonly used as an identifier of that block. The tuple of digests
(ciphered/unciphered block digests) is called digest-key or CHK for “content
hash key”. The data owner needs the CHK to be able to locate and uncipher
a block. The CHKs are themselves backed up and ultimately the data owner
only has to “remember” one CHK. Generally this ultimate CHK is stored
using a secret that the data owner cannot forget, like his ID for instance. It
is important to note that this technique can lead to some loss in privacy for
the data owner. Indeed, when several nodes own the same block, since the
ciphering scheme depends on the content and not on the nodes, they produce
the same ciphered blocks, and the same CHKs. Thus they are each able to
know that they share a file.

It is important to note that when single-instance-storage is not considered, it
is much simpler to use classic encryption techniques, e.g., based on asymmetric
ciphering.
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5.3 Data Availability

In this section, we explore the techniques described in the literature for im-
proving data availability despite failures while optimizing the use of the system
resources: data replication and garbage collection.

5.3.1 Data Replication

For the systems that distribute the data among a specific set of participants
(Pastiche, PeerStore, CBS, Flashback), the replication mechanism is quite
simple. In Pastiche, each participant entering the system looks for 5 other
participants having a lot of data in common with itself. These 5 participants
then become its backup partners. It can thus tolerate 4 node failures. With
PeerStore, the choice of partners is done in a different manner. However, the
authors say that there are ideally as many partners as there are data replicas,
which is similar to Pastiche. For the systems based on DHTs, thanks to (or
because of) the properties of DHTs, the global set of data stored is homoge-
neously distributed among the nodes. Consequently, to tolerate the departure
or the failure of a participating node, the data has to be replicated. In prac-
tice, the data blocks are generally replicated by the node that is responsible
for it (with the closest ID) on a small number of its neighbors in the iden-
tifier space. Additionally, the block can also be kept in cache on the nodes
that are on the path between the owner and the node responsible for it. ABS,
among the systems based on DHTs, proposes an alternative. The data owner
can choose the key under which a block will be stored. When a new block is
inserted in the DHT, an attempt is made to insert it with a digest of the data
as the key. A digest of the key itself (this is called rehashing) can also be used
to store the block on some other participant in order to move the data or to
tolerate a departure or crash.

Coding techniques are also used to finely control the level of data redundancy.
Many different error-correcting coding techniques can be used: erasure codes
[31] like Tornado [32], Fountain codes (also called rateless erasure codes) [33]
like Raptor [34], etc. The idea of erasure codes is basically that each data block
is fragmented into k fragments. From these k fragments, r other redundancy
fragments are computed. From these k + r fragments, any k fragments are
sufficient to rebuild the original data block.

Blocks are thus used to produce fragments with a controlled level of redun-
dancy. Venti-DHash uses this technique and stores the fragments on the suc-
cessors of the node responsible for the original data block. MoSAIC also uses
erasure codes for the production of redundant fragments but distributes them
opportunistically to the nodes encountered.
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5.3.2 Garbage Collection

Pastiche, pStore and ABS offer the possibility to delete the backed up data.
Only the data owner can request this operation - requests must be signed with
the owner’s private key. Additionally, when single instance storage is used, as
a block can be stored for several owners, an owner list is associated to each
data block to permit its deletion only when every owner has requested it.
In PeerStore, however, such an owner list does not exist (or is incomplete),
i.e., other nodes can rely on a block for their own backup without having
notified the node actually storing this block. This is due to the way PeerStore
implements inter-node single-instance-storage. For this reason PeerStore does
not allow delete operations. FlashBack uses the notion of a “lease” whereby a
data block is stored for a given duration. This duration is determined a priori
and exceeds the expected duration of unavailability of the data owner. Leases
can be renegotiated when they are half-expired.

5.4 Service Availability

Failures of a cooperative backup system can lead to the loss of some of the
stored data, as discussed in the previous section, but can also lead to the
unavailability of the entire backup system, which we address in this section.
Resilience to malicious denial-of-service attacks is a wide and active research
field. The approaches used to mitigate the lack of trust between the partic-
ipating nodes and to tolerate these DoS attacks can be based either on the
notion of reputation (a level of the trust of the partners that can be acquired
either locally or transitively) or on the use of micro-economy (exchange of
checks, tokens, etc.) [35–37].

We concentrate here on the attacks that are specific to cooperative backup
in general and more specifically the ones we found in the cooperative backup
system we studied: selfishness and retention of backup data.

5.4.1 Selfishness

Selfishness is a problem for every resource sharing system, as we saw in Section
2.2.4. Some mechanism is required to enforce fairness amongst peers - that they
contribute in proportion to what they consume. Many different solutions have
been proposed, most of them being based on the notion of micro-economy. We
look here only at the solutions adapted to storage systems.

It is worth noting that it is not possible for a system based on DHTs to
guarantee that the participants fairly contribute to the system with respect to
the amount of resources they consume (see Section 4.1). Consequently, Venti-
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DHash and pStore are not resilient to this type of attack. The ABS rehashing
technique (see Section 5.3.1) can be used to balance the loads on the DHT
but it does not take the effective usage of each node into account.

PeerStore proposes a simple solution based on pair-wise symmetrical exchanges,
i.e., each one of the two partners offers (approximately) the same storage ca-
pacity that it uses. To find partners, newcomers broadcast an offer for a given
storage capacity and listen to other participant replies that offer some capac-
ity in exchange that may be different. It is then up to newcomers to decide
whether or not to accept an offer. CBS also imposes symmetrical exchange
relationships, restricting data placement.

Pastiche does not deal with this problem but Samsara does: it extends the no-
tion of symmetrical exchanges with the use of claims. The data owner issues
a claim for the node that accepts to store its data, this exchange constitutes a
contract. The value of the claim represents the storage capacity of the stored
data. These claims can be forwarded to another contributor when the con-
tributor needs to store some of its own data. Finally, each node periodically
checks its co-contractors to ensure that they are adhering to the contract, i.e.,
to verify that its claims are satisfied, by challenging its contributors. If a node
breaches a contract, its partner is free to drop its data. The use of challenges
can be seen as a way to compute locally a level of reputation for a contributor.

Another simple solution is proposed in CFS [38]: each contributor limits any
individual peer to a fixed fraction of its space. These quotas are independent
of the peer’s space contribution. CFS uses IP addresses to identify peers, and
requires peers to respond to a nonce message to confirm a request for storage,
preventing simple forgery. This does not defend against malicious parties who
have the authority to assign multiple IP addresses within a block, and may
fail in the presence of network renumbering.

Several of these solutions were proposed to be extended with trusted third
parties, either centralized or distributed among trusted hardware devices. For
instance, PAST [39] provides quota enforcement that relies on a smartcard at
each peer. The smartcard is issued by a trusted third party, and contains a cer-
tified copy of the node’s public key along with a storage quota. The quota could
be determined based on the amount of storage the peer contributes, as verified
by the certification authority. The smartcard is involved in each storage and
reclamation event, and so can track the peer’s usage over time. Fileteller [40]
proposes the use of micro-payments to account for storage contributed and
consumed. Such micro-payments can provide the proper incentives for good
behavior, but must be provisioned and cleared by a third party and require
secure identities.

It is worth noting that, as a side effect, solutions based on symmetrical ex-

18



changes have the advantage of being resilient to flooding attacks, whereby a
node tries to obtain many storage resources by flooding the network with re-
quests. On the contrary, DHT based systems are not resilient to this type of
attack due to the very nature of DHTs.

5.4.2 Retention of Backup Data

Data retention is the situation in which a contributor does not release backed
up data when an owner issues a restoration request. This can be non inten-
tional, e.g., the contributor has crashed, or is disconnected, or intentional/malicious,
e.g., the contributor did not actually store the data or tries to blackmail the
data owner. Generally speaking, unintentional retention should be tolerated
whereas malicious retention should be prevented, or even punished.

In CBS, there is a two-fold solution to these problems: first there are peri-
odic challenges to verify that the partners really do store the data for which
they are responsible for, and second, there are rules to tolerate temporary
node failures. The periodic challenges are actually read requests for randomly
chosen data blocks sent to the contributors by data owners. Tolerance of tem-
porary faults is based on a grace period during which a participant can be
legitimately unavailable. After expiration of the grace period, the data stored
for the disconnected node can be erased (the data owner locally decides to
associate a bad reputation to the contributor). However, the grace period can
be used to gain resources dishonestly without contributing to the system. A
countermeasure is to define a trial period, that is longer than the grace period,
during which backup and challenges are permitted but restoration is not.

This challenge technique is also used by the other studied systems, in an
optimized form: a challenge concerns several blocks at a time and the response
is a signature of the set of blocks [13] [15].

Samsara and PeerStore also have a slightly different way of punishing unavail-
able nodes: their blocks are progressively deleted. The probability of deletion
of a block is chosen such that, given the number of block replicas, the prob-
ability of all the replicas being deleted becomes significant only after a large
number of unsatisfied challenges.

6 Conclusion

Peer-to-peer/cooperative systems constitute a new emerging approach for the
design of heavily distributed systems. They have very good properties regard-
ing scalability and are thus particularly well-adapted to ubiquitous computing
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scenarios. The application of peer-to-peer coopearation to backup has been
rendered feasible by recent dramatic increases in storage capacity and net-
work bandwidth. In this paper, we have surveyed the technical solutions to
this problem.

We first observed that the field of cooperative backup for wide-area networks or
local-area networks is very active. This research field has been recently boosted
by the peer-to-peer trend and reused many of the P2P techniques: distributed
hash tables, single-instance-storage, convergent encryption, etc. However, very
little work has targeted mobile devices, even if cooperative backup seems to
be quite appropriate for them (new data is frequently produced on many
types of devices, even disconnected from the fixed infrastructure: digital cam-
eras, phones, PDAs, laptops. However, mobile devices have their specificities
(ephemeral connections, reduced energy, etc.), so many of the techniques de-
veloped for WANs and LANs cannot be applied. Much effort is still needed to
alleviate the specific problems raised by frequent disconnections, ephemeral
connections, limited battery power, inability to access trusted third parties,
etc.

From this situation, trails that can be followed to make some progress in this
field include: adequate disconnected cooperation incitatives, proper erasure
codes with varying parameters, realistic mobility models, and stochastic mod-
els of the dependability of mobile devices implementing cooperative services.
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