

## **Peer-to-Peer Overlays**

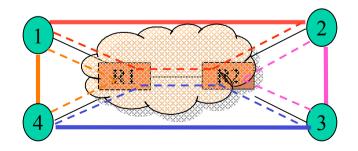
Dr. Laurent Mathy Computing Department Lancaster University, UK laurent@comp.lancs.ac.uk

LAAS, Nov 29, 2006

## Aims of the talk



- To provide a high level introduction to P2P system design and their underlying generic mechanisms
  - Not the nitty-gritty of specific protocols
- Present the two broad classes of P2P systems
- Briefly outline possible applications of P2P systems
- Briefly outline security issues in P2P systems



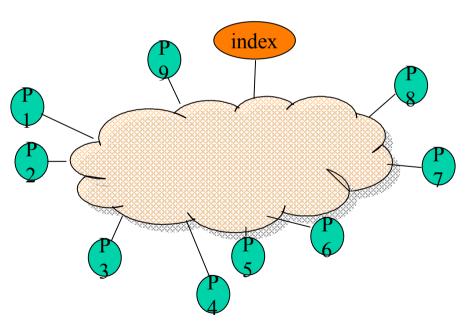

- Definition
- Unstructured P2P systems
- Structured P2P systems
- Some applications
- Churn
- (Some) Security issues
- Conclusions

## Definition



- Overlay Network: virtual communications structures that are logically 'laid over' a "physical" network such as the Internet
  - Virtual/logical links: tunnels, application level "associations" (TCP, UDP), etc.
    - The overlay links are not "physically fixed", they are "configured"
    - Underlay responsible for implementing the overlay links
  - Must get to know one overlay node (out-of-band) prior to joining
- P2P Overlay
  - Application-level overlay
  - (near) equivalent functionality on each node
  - Self-organisation
  - Geared towards object location/retrieval



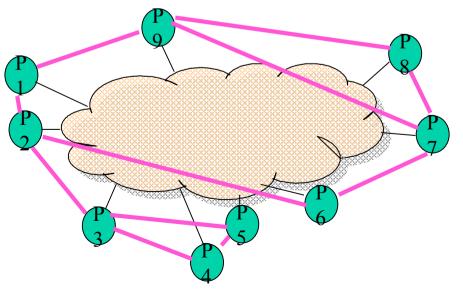



- Definition
- Unstructured P2P systems
- Structured P2P systems
- Some applications
- Churn
- (Some) Security issues
- Conclusions

#### Laurent Mathy

#### **Unstructured P2P**

- The main issue in P2P is indexing/locating objects
  - Direct exchange between nodes once located
- First generation unstructured P2P system were based on central index
  - Register objects with index
  - Query index
  - Choose a peer as server
- Index is single point of failure
- Napster
- Bit-torrent
  - Object is block (block of file)
  - One index per file
  - Multi-source download








## **Unstructured P2P (2)**

- Decentralised
  - Each node has its objects/references to objects
- Network structure is based on group members (i.e. you choose who to talked to based on who they are solely)
  - Builds a mesh-based structure where each node selects and tracks a few neighbours
  - Adaptable, "free" topology
  - Topology usually constructed in order to optimise some objective
    - low delays
    - Simplicity (random)



## **Unstructured P2P**



- Search in decentralised unstructured P2P
  - Flood request on mesh (broadcast)
- All this flooding poses some scalability issues
- To improve scalability, trade accuracy for reduced traffic based on
  - Probabilistic techniques: Random walks, etc
  - Limited scope broadcast
- No guarantee that a search yields results



- Definition
- Unstructured P2P systems
- Structured P2P systems
- Some applications
- Churn
- (Some) Security issues
- Conclusions

### **Structured P2P**



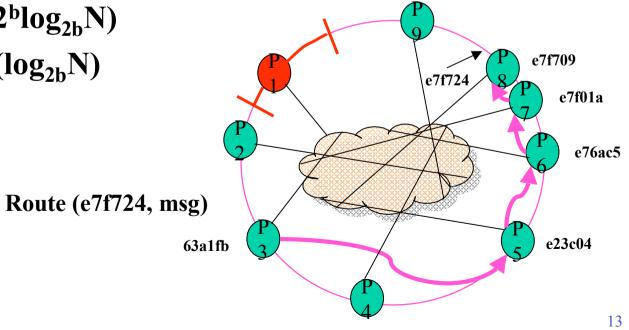
- Goal is to ensure scalability without compromising on false negatives
  - Other important goal is to try and provide a maximum bound on time to location of an object
- Network structure based on information structure (i.e. you choose who to talk to based on what piece of info you are after) as well as networks configuration.
- Here the focal point is the objects

#### LANCASTER UNIVERSITY Computing Department

## **Structured P2P**

- Basic principle is the same regardless of system
  - Define an appropriate address space
  - Give nodes and objects an address
  - Split space between nodes
    - Each node is responsible for managing part of the space (region)
    - Nodes are responsible for the objects whose address falls into their region
- The different structured P2P systems are simply about
  - Allocating/re-allocating regions to nodes
  - Placing objects in the appropriate region
  - Efficiently locating objects in the space (finding node responsible for the object)

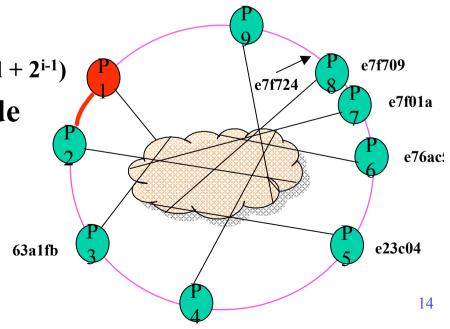



## **Structured P2P (2)**

- "Appropriate address space"
  - Uniform address space
  - Roughly, the number of objects managed by each node should be, on average, the same
- Original structure of object representation (file name, keyword, URL, etc) must be abstracted
  - Use of (possibly multiple) hash functions to transform object representation into uniform address space
  - This representation of objects is often called a "key"
- Hence the name "Distributed Hash Table"
  - The structure manages (key, value) pairs



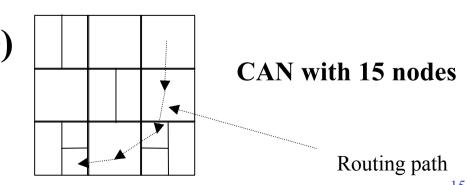
#### **Structured P2P --- Pastry**


- Address space is a circle (often with 2<sup>128</sup> addresses)
- Nodes and objects get Id on circle
- Space split: each node responsible for keys that are numerically closest to it
- **Routing principle: forward requests through series of nodes** known to have longer prefix-match with key than current node
- State per node: O(2<sup>b</sup>log<sub>2b</sub>N)
- **Object location: O(log<sub>2h</sub>N)**



#### **Structured P2P -- Chord**




- Address space is a circle (often with 2<sup>128</sup> addresses)
- Nodes and objects get Id on circle
- Space split: key assigned to first node whose Id is equal to or follows the key (concept of successor node)
- Routing principle: suffice to know the next successor node on circle to guarantee correct routing
  - But can be inefficient
  - Idea of "finger table"
    - Know successor nodes for keys (Nid + 2<sup>i-1</sup>)
- Object location and state per node
  - O(logN)





### **Structured P2P -- CAN**

- Content Addressable Networks
  - A CAN is a virtual d-dimensional Cartesian coordinate space on a dtorus
  - Nodes have coordinates in the space and the space is partitioned in as many "zones" as there are nodes – each node "own" a zone
  - Content is "hashed" onto a coordinate
    - Coresponding zone owner holds either content or reference to it
  - Can is capable of routing message to a coordinate (actually owner of zone that contains the coordinate), in a hop-by-hop manner (i.e. From neighbouring zone to neighbouring zone)
- State: O(2d)
- Object location: O(d/4N<sup>1/d</sup>)





- Definition
- Unstructured P2P systems
- Structured P2P systems
- Some applications
- Churn
- (Some) Security issues
- Conclusions

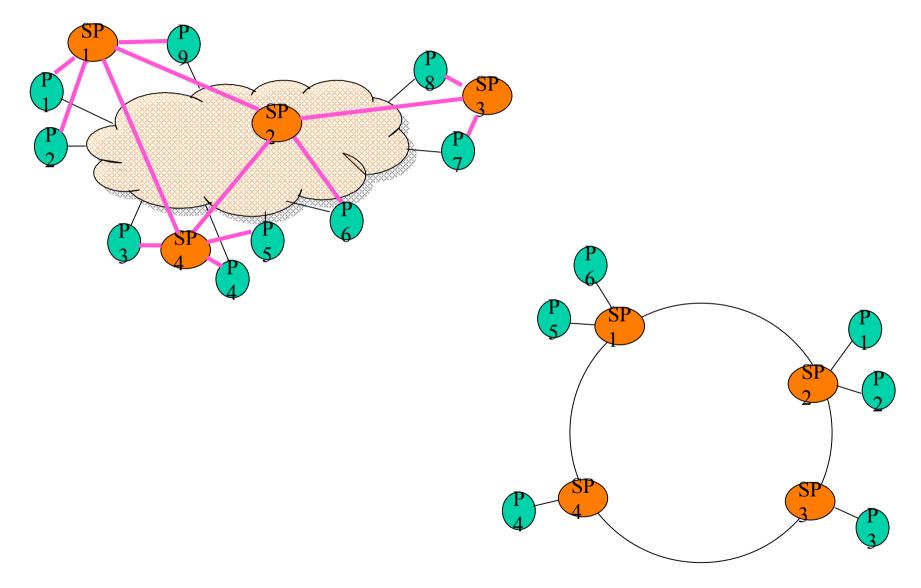
#### **Some Applications**



- P2P systems provide an application substrate
- Possible applications
  - File sharing
    - Objects are either complete files or file chunks
  - General indexing (structured)
  - Storage
    - Split file into chunks, add redundancy (erasure coding) and store chunks on responsible nodes (possibly with redundancy)
  - Server selection (structured mostly)
  - Large-scale combinatorial search (structured)



- Definition
- Unstructured P2P systems
- Structured P2P systems
- Some applications
- Churn
- (Some) Security issues
- Conclusions


## Churn



- Churn represents the notion of nodes joining and leaving the P2P system
  - Churn creates much work for the P2P system
  - During churn
    - Some objects may be temporarily unlocatable
    - Some objects may be temporarily unavailable
    - Much of the protocols work and overhead occurs
    - Partitioning can occur
- Studies have shown that a few stable nodes, then many "ephemeral" visits
- Solution:
  - divide population into 2 groups
    - Stable nodes (Super peers) with responsibility
    - Others, who can come and go with little structural impact
  - On structured P2P: keep republishing keys on a periodic basis



## Churn (2)





- Definition
- Unstructured P2P systems
- Structured P2P systems
- Some applications
- Churn
- (Some) Security issues
- Conclusions

## (Some) Security Issues



- In general, P2P system assume full cooperation between nodes
- Plenty of opportunity for an attacker to abuse the system:
  - denial-of-service attack
    - Refuse to route, denies existence of object, mis-routes
      - Shadow network
  - Pollution attack
    - Replies to everything with garbage
  - Man-in-the-middle attack
    - By definition it is easy
    - Can modify requests
  - False routing update info
    - To attract/repulse query traffic
  - Churn attack
  - Cybil attack
    - Physical node assumes very many virtual identities
    - Amplifies other attacks

## Conclusions



- P2P systems are based on very few fundamental principles
  - Object location, indexing, storage, retrieval
  - Many applications can be built on these
  - Structured P2P focus on the objects but may look very unstructured at IP level
- Often, nodes in a P2P systems are considered "homogeneous"
  - Equal functionality
  - Equal performance
  - Practice has shown that this is rarely the case
- This poses many performance and security issues
  - These are not insurmountable, but very often there is no provision to support solutions
- Trust propagation models can help in certain cases
  - But what if nodes can change identities



# Thank you for your attention!



© Scott Adams, Inc./Dist. by UFS, Inc.