Monadic second-order logic and the verification of graph properties

Bruno Courcelle

```
Université Bordeaux 1, LaBRI
    and
Institut Universitaire de France
```


References: Chapter 5 in: Handbook of graph grammars vol.1, 1997,
Book in progress, Articles with J. Makowsky, U. Rotics, P. Weil, S. Oum, A. Blumensath ;
See : http://www.labri.fr/perso/courcell/ActSci.html

Monadic second-order logic : expression of properties, queries, optimization functions, number of configurations.

Mainly useful for tree-structured graphs (Second-order logic is useless)

Two types of questions:
Checking G $\mid=\varphi$ for fixed formula φ, given $G,($ Model checking)
Deciding if $\exists \mathrm{G}, \mathrm{G} \in \mathcal{C}, \mathrm{G} \mid=\varphi$ for fixed C, given formula φ.

Tools to be presented
Algebraic setting for tree structuring of graphs
Recognizability $=$ finite congruence \equiv inductive computability
\equiv finite deterministic automaton on terms
Fefermann-Vaught: MS definability \Rightarrow recognizability.
Verification of graph properties.

History: Confluence of 4 independent research directions, now intimately related:

1. Polynomial algorithms for NP-complete and other hard problems on particular classes of graphs, and especially hierarchically structured ones: series-parallel graphs, cographs, partial k-trees, graphs or hypergraphs of tree-width < k, graphs of clique-width $<\mathrm{k}$.
2. Excluded minors and related notions of forbidden configurations (matroid minors, « vertex-minors »).
3. Decidability of Monadic Second-Order logic on classes of finite graphs, and on infinite graphs.
4. Extension to graphs and hypergraphs of the main concepts of Formal Language Theory : grammars, recognizability, transductions, decidability questions.

Summary

1. Introduction

Extension of Formal Language Theory notions

2. Context-free sets defined by equation systems.
3. The graph algebras HR and VR. Tree-width.

Algorithmic applications :

4. Inductive computations and recognizability; fixed-parameter tractable algorithms.
5. Monadic second-order logic defines inductive properties and functions

Formal language theory extended to graphs

6. Closure and decidability properties ; generation of classes of graphs by monadic second-order transductions.
7. Graph rewriting.

Introduction : An overview chart:

Key concepts of FLT and their extensions

Languages	Graphs
Algebraic structure : monoid ($\mathrm{X}^{*},{ }^{*}, \varepsilon$)	Algebras based on graph operations : $\oplus, \otimes, / /$ quantifier-free definable operations Algebras: HR, VR
Context-free languages : Equational subsets of ($\mathrm{X}^{*},{ }^{*}, \varepsilon$)	Equational sets of the algebras HR, VR
Regular languages : Finite automata \equiv Finite congruences \equiv Regular expressions \equiv	Recognizable sets of the algebras HR, VR defined by congruences
\equiv Monadic Second-order definable sets of words or terms	Monadic Second-order definable sets of graphs
Rational and other types of transductions	Monadic Second-order transductions

Equational (context-free) sets

Equation systems = Context-Free (Graph) Grammars in an algebraic setting

In the case of words, the set of context-free rules

$$
\mathrm{S} \rightarrow \mathrm{aST} ; \mathrm{S} \rightarrow \mathrm{~b} ; \mathrm{T} \rightarrow \mathrm{cTTT} ; \mathrm{T} \rightarrow \mathrm{a}
$$

is equivalent to the system of two set equations:

$$
\begin{array}{lll}
S=\text { a } S T & \cup & \{\mathrm{~b}\} \\
T=\text { c } T T T & \cup & \{\mathrm{a}\}
\end{array}
$$

where S is the language generated by $S \quad$ (idem for T and T).

For graphs (or other objects) we consider systems of equations like:

$$
\begin{array}{ll}
S=\mathrm{f}(\mathrm{k}(S), T) \cup\{\mathrm{b}\} \\
T=\mathrm{f}(T, \mathrm{f}(\mathrm{~g}(T), \mathrm{m}(T))) \cup\{\mathrm{a}\}
\end{array}
$$

where f is a binary operation, g, k, m are unary operations on graphs, a, b denote basic graphs (up to isomorphism).

An equational set is a component of the least (unique) solution of such an equation system. This is well-defined in any algebra.

Logical expression of graph properties

Cf. Descriptive complexity, theory of data bases.

A graph G can be given as a logical structure

$$
<\mathrm{V}_{\mathrm{G}}, \operatorname{edg}_{\mathrm{G}}(., .)>.
$$

Typical properties expressible by First-order formulas:

G has no loop, or has degree at most 5 , or has indegree at most 3 .
G has an induced subgraph isomorphic to a fixed finite graph (useful for graph rewriting systems)

Such properties are characterized (Gaifman) as local properties.

Monadic Second-Order (MS) Logic

$=$ First-order logic on power-set structures
$=$ First-order logic extended with (quantified) variables denoting subsets of the domains.

MS properties : transitive closure, properties of paths, connectivity, planarity (via Kuratowski, uses connectivity), k-colorability.

Examples of formulas for $\mathrm{G}=\left\langle\mathrm{V}_{\mathrm{G}}\right.$, edgG(...) \rangle, undirected
Non connectivity :
$\exists X(\exists x \in X \wedge \exists y \notin X \wedge \forall u, v(u \in X \wedge \operatorname{edg}(u, v) \Rightarrow v \in X))$
2-colorability (i.e. G is bipartite):
$\exists X(\forall u, v(u \in X \wedge e d g(u, v) \Rightarrow v \notin X) \wedge \forall u, v(u \notin X \wedge e d g(u, v) \Rightarrow v \in X))$

Edge set quantifications

Provably more powerful.

Incidence graph of G undirected, $\operatorname{Inc}(G)=\left\langle\mathrm{V}_{\mathrm{G}} \cup \mathrm{E}_{\mathrm{G}}\right.$, inc $\left._{\mathrm{G}}(.,).\right\rangle$.
$\operatorname{incG}_{G}(\mathrm{v}, \mathrm{e}) \Leftrightarrow \mathrm{v}$ is a vertex of edge e .
Monadic second-order $\left(\mathrm{MS}_{2}\right)$ formulas written with inc can use quantifications on sets of edges.

Existence of a Hamiltonian circuit is expressible by an MS_{2} formula, but not by an MS formula.

Theorem : MS_{2} formulas are no more powerful than MS formulas :
for graphs of degree $\leq d$, or of tree-width $\leq k$, or for planar graphs, or for graphs without some fixed H as a minor, or graphs of average degree $\leq k$ (uniformly k-sparse).

The two types of questions we would like to solve :

1) Checking G $\mid=\varphi$ for fixed formula φ, given G, (Model checking)

Polynomial time $\mathrm{O}\left(\mathrm{n}^{\mathrm{s}}\right)$ for each first-order formula with s variables.
Linear for each first-order formula on graphs of bounded degree.

NP-complete problems (3-coloring) can be expressed by MS formulas.
Linear for each MS formula on graphs of bounded tree-width.
2) Deciding if $\exists \mathrm{G}, \mathrm{G} \in C, \mathrm{G} \mid=\varphi$ for fixed C, given formula φ.

Even for first-order formulas, undecidable on the class of all finite graphs, and even of all finite planar graphs of degree at most 3 .
Decidable for MS formulas with edge set quantifications on the class of graphs of tree-width $\leq k$, and for each fixed k (untractable). Also on certain context-free sets of graphs (defined by HR grammars).

Tree-decompositions and their algebraic definition.

Tree-width

Tree-decomposition of width k: k+1 = maximum size of a box

Tree-width : twd $(G)=$ minimum width of a tree-decomposition

Trees have tree-width 1,
K_{n} has tree-width $n-1$,
the $\mathrm{n} \times \mathrm{n}$ grid has tree-width n

Outerplanar graphs have tree-width at most 2.

HR operations: Origin: Hyperedge Replacement hypergraph grammars ; associated complexity measure : tree-width

Graphs have distinguished vertices called sources, pointed to by labels from a set of size k: $\{a, b, c, \ldots, h\}$.
Binary operation(s): Parallel composition
$\mathrm{G} / / \mathrm{H}$ is the disjoint union of G and H and sources with same label are fused.
(If G and H are not disjoint, one first makes a copy of H disjoint from G).

G

H

Unary operations : Forget a source label
Forgeta(G) is G without a-source : the source is no longer distinguished ; it is made "internal".

Source renaming :

Rena, $b(G)$ exchanges source names a and b
(replaces a by b if b is not the name of a source)

Nullary operations denote basic graphs: the connected graphs with at most one edge. For dealing with hypergraphs one takes more nullary symbols for denoting hyperedges.

More precise algebraic framework : a many sorted algebra where each finite set of source labels is a sort. The above operations are overloaded.

Proposition: A graph has tree-width $\leq \mathrm{k}$ if and only if it can be constructed from basic graphs with $\leq \mathrm{k}+1$ labels by using the operations $/ /$, Rena,b and Forgeta. Example : Trees are of tree-width 1, constructed with two source labels, r (root) and n (new root): Fusion of two trees at their roots :

Extension of a tree by parallel composition with a new edge, forgetting the old root, making the "new root" as current root:

$$
\mathrm{E}=r \bullet \longrightarrow n
$$

Renn,r (Forgetr (G //E))

From an algebraic expression to a tree-decomposition
Example : cd // Ren $\operatorname{Rac}_{\mathrm{c}}\left(\mathrm{ab} / / \operatorname{Forget}_{\mathrm{b}}(\mathrm{ab} / / \mathrm{bc})\right.$)
Constant $a b$ denotes a directed edge from a to b.

The tree-decomposition associated with this term.

VR operations

Origin : Vertex Replacement graph grammars
Associated complexity measure : clique-width, has no combinatorial characterization but is defined in terms of few very simple graph operations (whence easy inductive proofs).

Equivalent notion : rank-width (Oum and Seymour) with better structural and algorithmic properties.

Graphs are simple, directed or not.
k labels : a, b, c, \ldots, h. Each vertex has one and only one label ; a label p may label several vertices, called the p-ports.

One binary operation: disjoint union

Unary operations: Edge addition denoted by Add-edga,b

Add-edga,b(G) is G augmented with (un)directed edges from every a-port to every b-port.

G

Add-edga,b(G)

Vertex relabellings: Relaba, $b(\mathrm{G})$ is G with every vertex labelled by a relabelled into b Basic graphs are those with a single vertex.

Definition: A graph G has clique-width $\leq \mathrm{k} \Leftrightarrow$ it can be constructed from basic graphs by means of k labels and the operations \oplus, Add-edga, b and Relaba, b

Its (exact) clique-width, $\operatorname{cwd}(\mathrm{G})$, is the smallest such k .

Proposition: (1) If a set of simple graphs has bounded tree-width, it has bounded clique-width, but not vice-versa.
(2) Unlike tree-width, clique-width is sensible to edge directions: Cliques have cliquewidth 2 , tournaments have unbounded clique-width.
(3) a. Deciding "Clique-width ≤ 3 " is a polynomial problem. (Habib et al.)
b. The complexity (polynomial or NP-complete) of "Clique-width $=4$ " is unknown.
c. It is NP-complete to decide for given k and G if $\mathrm{cwd}(\mathrm{G}) \leq \mathrm{k}$. (Fellows et al.)
d. There exists a cubic approximation algorithm that for given k and G answers (correctly) : either that $\mathrm{cwd}(\mathrm{G})>k$,
or produces a clique-width algebraic term using $2^{24 \mathrm{k}}$ labels. (Oum)
This yields Fixed Parameter Tractable algorithms for many hard problems.

Example : Cliques have clique-width 2.

K_{n} is defined by t_{n} where $\mathrm{t}_{\mathrm{n}+1}=\operatorname{Relab} \mathbf{b}, \mathbf{a}\left(\operatorname{Add}-\mathrm{edga} \mathbf{a}, \boldsymbol{b}\left(\mathrm{t}_{\mathrm{n}} \oplus \mathbf{b}\right)\right)$

Example : Cographs are generated by \oplus and \otimes defined by :
$\mathbf{G} \otimes \mathrm{H}=\operatorname{Relabb}, \mathbf{a}^{\mathbf{a}}($ Add-edga,b $\mathbf{b}(\mathrm{G} \oplus$ Relaba,b$(\mathrm{H}))$
$=\mathrm{G} \oplus \mathrm{H}$ with "all edges" between G and H .

Algorithmic applications

Fixed parameter tractability results

Theorem (B.C.) : For graphs of tree-width $\leq \mathrm{k}$, each monadic second-order property, (ex. 3-colorability), each monadic second-order optimization function, (ex. distance), each monadic second-order counting function, (ex.\# of paths) is evaluable in linear time with help of a result by Bodlaender (1996).

Similar results hold for clique-width bounded graphs and monadic second-order logic without edge set quantifications with cubic time because of the parsing step.

Applications to the decidability of logical formulas

 on classes of graphsTheorem (B.C.) : The following problems can be solved by an algorithm :
Twd-MS2 : Input: k and a monadic second-order formula (with edge set quantifications).
Questions: Does the corresponding property hold for graphs of tree-width $\leq \mathrm{k}$?
Does the corresponding property hold some graph of tree-width $\leq \mathrm{k}$?
(tree-width $\leq \mathrm{k}$ can be replaced by : in a given HR-equational set).

Cwd-MS : Input : k and a monadic second-order formula (without edge set quantifications).

Questions: Does the corresponding property hold for graphs of clique-width $\leq \mathrm{k}$?
Does the corresponding property hold some graph of clique-width $\leq \mathrm{k}$?
(clique-width $\leq \mathrm{k}$ can be replaced by : in a a given VR-equational set).
(Limited) application : Checking the 4-Color Theorem for graphs of cwd $\leq \mathrm{k}$.

Inductive computations

Example : Series-parallel graphs, defined as graphs with sources 1 and 2, generated from $\mathrm{e}=1 \longrightarrow 2$ and the operations // (parallel-composition) and series-composition defined from other operations by :

$$
\mathrm{G} \bullet \mathrm{H}=\operatorname{Forget}_{3}\left(\operatorname{Ren}_{2,3}(\mathrm{G}) / / \operatorname{Ren}_{1,3}(\mathrm{H})\right)
$$

Example :

Inductive proofs:

1) G, H connected implies: $\mathrm{G} / / \mathrm{H}$ and $\mathrm{G} \bullet \mathrm{H}$ are connected, (induction)
e is connected (basis) :
$\Rightarrow \quad$ All series-parallel graphs are connected.
2) It is not true that:

$$
\mathrm{G} \text { and } \mathrm{H} \text { planar implies: } \mathrm{G} / / \mathrm{H} \text { is planar }\left(\mathrm{K}_{5}=\mathrm{H} / / \mathrm{e}\right) \text {. }
$$

A stronger property for induction :
G has a planar embedding with the sources in the same "face"
$\Rightarrow \quad$ All series-parallel graphs are planar.

Inductive computation: Test for 2-colorability

1) Not all series-parallel graphs are 2 -colorable (see K_{3})
2) $\mathrm{G}, \mathrm{H} 2$-colorable does not imply that $\mathrm{G} / / \mathrm{H}$ is 2-colorable (because $\mathrm{K}_{3}=\mathrm{P}_{3} / / \mathrm{e}$).
3) One can check 2-colorability with 2 auxiliary properties :

Same(G) $=\mathrm{G}$ is 2-colorable with sources of the same color,
Diff(G) $=\mathrm{G}$ is 2-colorable with sources of different colors
and by using rules :

```
Diff(e) = True ; Same(e) = False
Same(G//H) \Leftrightarrow Same(G)^ Same(H)
Diff(G//H) \Leftrightarrow Diff(G)^ Diff(H)
Same(G\bulletH) \Leftrightarrow(Same(G)^ Same (H)) \vee (Diff(G)^ Diff(H))
Diff(G\bulletH) \Leftrightarrow(Same(G) ^ Diff(H)) \vee (Diff(G) ^ Same(H))
```

We can compute for every SP-term t, by induction on the structure of t the pair of Boolean values (Same(Val(t)), Diff(Val(t))). We get the answer for $G=\operatorname{Val}(\mathrm{t})$ (the graph that is the value of t) regarding 2-colorability.

Important facts :

1) The existence of properties forming an inductive set (w.r.t. operations of F) is equivalent to recognizability in the considered F-algebra.
2) The simultaneous computation of m inductive properties can be implemented by a "tree" automaton with 2^{m} states working on terms t. This computation takes time $\mathrm{O}(|\mathrm{t}|)$.
3) An inductive set of properties can be constructed (at least theoretically) from every monadic-second order formula.
4) This result extends to the computation of values (integers) defined by monadic-second order formulas.

Definition : A set L of words, of trees, of graphs or relational structures is Monadic Second-Order (MS) definable iff

$$
L=\{S / S \mid=\varphi\} \text { for an MS formula } \varphi
$$

Theorem : (1) A language (set of words or finite terms) is recognizable \Leftrightarrow it is MS definable
(2) A set of finite graphs is VR-recognizable
\Leftarrow it is MS definable
(3) A set of finite graphs is HR-recognizable
\Leftarrow it is MS_{2} definable
Proofs:
(1) Doner, Thatcher, Wright, see W. Thomas, Handbook formal languages, vol. 3.
(2) (3) There are two possible proofs. I sketch the informative one.

Basic facts for (2) :
Let F consist of \oplus and unary quantifier-free definable operations f .
For every MS formula φ of quantifier-height k, we have
(a) for every f, one can construct a formula $f^{\#}(\varphi)$ such that:

$$
f(S)|=\varphi \Leftrightarrow S|=f^{\#}(\varphi)
$$

(b) (Hanf, Fefermann and Vaught, Shelah) one can construct formulas $\psi_{1}, \ldots, \psi_{n}, \theta_{1}, \ldots, \theta_{n}$ such that :

$$
\mathrm{S} \oplus \mathrm{~T} \mid=\varphi \Leftrightarrow \text { for some } \mathrm{i}, \mathrm{~S}\left|=\psi_{\mathrm{i}} \wedge \mathrm{~T}\right|=\theta_{\mathrm{i}}
$$

where $f^{\#}(\varphi), \psi_{1}, \ldots, \psi_{\mathrm{n}}, \theta_{1}, \ldots, \theta_{\mathrm{n}}$ have quantifier-height $\leq \mathrm{k}$.
(c) Up to equivalence, there are finitely many formulas of quantifier-height $\leq \mathrm{k}$ forming a set Φ_{k}. One builds an automaton with states the subsets of Φ_{k} : the MS-theories of quantifier-height $\leq \mathrm{k}$ of the graphs defined by the subterms of the term to be processed.

Fefermann- Vanght for \oplus.

$$
S \oplus T \vDash \varphi \Leftrightarrow V_{i} S \vDash \psi_{i} \wedge T \vDash \theta_{i}
$$

$$
\text { with } q^{h}\left(\psi_{i}\right), q_{i}\left(\theta_{i}\right) \leqslant q h(\varphi)
$$

$$
T_{h}(S \oplus T)=\Phi_{\oplus, h}\left(T_{h}(S), \operatorname{Th}_{h}(T)\right)
$$

We need to handle formulas with free variables

$$
\begin{aligned}
& (S \oplus T, \bar{A}) \vDash \varphi \Leftrightarrow V_{i}(S, \bar{A} \upharpoonright S) \vDash \psi_{i} \wedge\left(T, \bar{A}_{\Gamma}\right) \vDash \theta_{i} \\
& \operatorname{sat}(S \oplus T, \varphi, \bar{x})=\biguplus_{i} \operatorname{sat}\left(S, \psi_{i}, \bar{x}\right) \otimes \operatorname{sat}\left(T, \theta_{i}, \bar{x}\right)
\end{aligned}
$$

where $\left.B \otimes \emptyset=\left\{\left(B_{1} \cup C_{1}, \ldots, B_{n} \cup C_{m}\right) / \bar{B} \in B, \bar{c} \in \emptyset\right)\right\}$
MS logic with only set variables:

$$
\begin{aligned}
& X \subseteq y, X=\varnothing, \operatorname{Sgl}^{(x)}, \text { Cord }_{p, q}(x) \\
& R(x, y, z) \Leftrightarrow \exists x \in X, y \in y, z \in Z \cdot R(x, y, z) \\
& \exists x \cdot \varphi(x, \ldots) \Leftrightarrow \exists x . \operatorname{Sgl}(x) \wedge \tilde{\varphi}(x, \cdots)
\end{aligned}
$$

Proof by induction on φ :
There exists a decomposition

$$
\begin{aligned}
& \text { ere exists a decomposition } \\
& {\left[\left(\psi_{1}, \theta_{1}\right), \ldots,\left(\psi_{m}, \theta_{m}\right)\right]_{\varphi} q h\left(\psi_{i}\right), q h\left(\theta_{i}\right) \leqslant q h(\varphi)}
\end{aligned}
$$

st.
$\operatorname{sat}(S \oplus T, Y)=\bigcup_{i} \operatorname{sat}\left(S, \psi_{i}\right) \otimes \operatorname{sat}\left(T, \theta_{i}\right)$
Cases : $x \subseteq y:[(x \subseteq y, x \subseteq y)]$

$$
\begin{array}{ll}
x \subseteq & :[(\operatorname{Sgl}(x), x=\phi),(x=\phi, \operatorname{Sgl}(x))] \\
\operatorname{Sgl}(x) & :[(R(x, y), \text { True }),(\text { True, } R(x, y))] \\
R(x, y):[\cdots]_{\varphi} \cdot[\cdots]_{\varphi^{\prime}} \\
\varphi \vee \varphi^{\prime}: & : \text { use }^{\prime} \text { a lemma: }
\end{array}
$$

7φ : We use a lemma:

$$
M_{i} \neg \alpha_{i} \times \neg \beta_{i} \equiv W_{I}\left(M_{i \in I} \neg \alpha_{i} \wedge M_{i \notin I} \neg \beta_{i}\right)
$$

gives 1

$$
\begin{aligned}
(S \oplus T, \bar{A}) & \vDash \exists X \cdot \varphi(x) \\
& \Leftrightarrow(S \oplus T, \bar{A} B) \vDash \varphi \quad \text { for some } B \\
& \Leftrightarrow V_{i}\left(S, \bar{A}_{\Gamma S} B \cap D_{S}\right) \vDash \psi_{i} \wedge\left(T, \bar{A}_{\Gamma T} B_{\cap}\right) \vDash \theta_{i} \\
& \Leftrightarrow V_{i}(S, \bar{A} \wedge S) \vDash \exists x \cdot \psi_{i}(x) \wedge\left(T, \bar{A}_{\Gamma} T\right) \vDash \exists X \cdot \theta_{i}(x)
\end{aligned}
$$

Hence we get $[\cdots]_{\exists x . \varphi(x)}$ from $[\cdots]_{\varphi}$ by adding $\exists X$. to formulas.
The condition on quantifier-height is satisfied For $\forall x, \varphi(x)$ we use $\neg \exists x, \neg \varphi(x)$.
Exencises: - Card ${ }_{p, q}(X)$

- Replace U_{i} by $\left(t_{i}\right.$

8.

Graph Rewriting

1) graph rewriting rules : local graph transformations
2) grammars based on graph rewriting rules

- either context-free : there are 2 types:
-- hyperedge replacement rewriting rules, fairly manageable, equivalent to HR-equation systems
-- vertex replacement, very complicated,
equivalent to VR-equation systems
- or more general : hard to obtain general results

3) possible applications :

- graph properties invariant under application of local graph transformations,
- verification of programs with complex data structures and pointers.

Example : Series-parallel graphs

defined as the set of graphs with sources 1 and 2,
generated from $\mathrm{e}=1 \longrightarrow 2$ and the operations // (parallel-composition) and series-composition defined from other operations by :

$$
\mathrm{G} \bullet \mathrm{H}=\operatorname{Forget}_{3}\left(\operatorname{Ren}_{2,3}(\mathrm{G}) / / \operatorname{Ren}_{1,3}(\mathrm{H})\right)
$$

Equation : $S=S / / S \cup S \bullet S \cup e$
Rewriting rules $1-S \rightarrow 2 \rightarrow 1-S \rightarrow .-S \rightarrow 2$
${ }_{1-S \rightarrow 2 \rightarrow 1} \longrightarrow 2 ; 1 \longrightarrow S \rightarrow 2 \rightarrow 1 \longrightarrow 2$

Local graph transformations :

Rule: $L \rightarrow R, L$ and R are graphs with same source names.

Application of the rule :
$\mathrm{G} \rightarrow \mathrm{H} \quad$ if $\quad \mathrm{G}=$ Forget $_{\text {AII }}(\mathrm{K} / / \mathrm{L})$ and $\mathrm{H}=$ Forget $_{A /(\mathrm{K} / / \mathrm{R})}$ for some graph K with same source names as L, R.

Intuition : in G, a subgraph isomorphic to L is replaced by R; the "gluing vertices" are sources.

Questions to ask:
For a property P :

1) Is it true that if G satisfies P, and $L \rightarrow R$ is applicable, the resulting graph satisfies P ?

If P is first-order expressible or monadic second-order expressible, then this is decidable on graphs of tree-width $\leq k$, for each k.
2) Is it true that all graphs derivable from G by a given finite set of rules satisfy P ?

One must give more hypotheses.

Monadic second-order transductions

$\operatorname{STR}(\Sigma)$: the set of finite Σ-relational structures (or finite directed ranked Σ-hypergraphs).

MS transductions are multivalued mappings : $\tau: \operatorname{STR}(\Sigma) \rightarrow \operatorname{STR}(\Gamma)$

$$
\mathrm{S} \longrightarrow \mathrm{~T}=\tau(\mathrm{S})
$$

where T is :
a) defined by MS formulas
b) inside the structure: $S \oplus S \oplus \ldots \oplus S$
(fixed number of disjoint "marked" copies of S)
c) in terms of "parameters", subsets X_{1}, \ldots, X_{p} of the domain of S.

Proposition : The composition of two MS transductions is an MS transduction.

Remark : For each tuple of parameters $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{p}}$ satisfying an MS property, T is uniquely defined. τ is multivalued by the different choices of parameters.

Examples: $(\mathrm{G},\{\mathrm{x}\}) \mid \longrightarrow$ the connected component containing x .
$(\mathrm{G}, \mathrm{X}, \mathrm{Y}) \longmapsto$ the minor of G resulting from contraction of edges in X and deletion of edges and vertices in Y .

Example of an MS transduction (without parameters): The square mapping δ on words: $u \mid \rightarrow$ uu

$$
\begin{aligned}
& \text { For } \mathrm{u}=\text { aac, we have } \mathrm{S} \quad \bullet \rightarrow \bullet \rightarrow \text { • } \\
& \text { a a c } \\
& \begin{array}{llllll}
S \oplus S & \bullet & \rightarrow & \rightarrow & & \rightarrow \\
& a & a & c & a & a \\
c
\end{array} \\
& \delta(\mathrm{~S})
\end{aligned}
$$

In $\delta(\mathrm{S})$ we redefine $\mathrm{Suc}($ (i.e., \rightarrow) as follows:

$$
\begin{aligned}
\operatorname{Suc}(x, y): \Leftrightarrow & p_{1}(x) \& p_{1}(y) \& \operatorname{Suc}(x, y) \quad v p_{2}(x) \& p_{2}(y) \& \operatorname{Suc}(x, y) \\
& v p_{1}(x) \& p_{2}(y) \& " x \text { has no successor" \& "y has no predecessor" }
\end{aligned}
$$

We also remove the "marker" predicates p_{1}, p_{2}.

The fundamental property of MS transductions :

Every MS formula ψ has an effectively computable backwards translation $\tau \#(\psi)$, an MS formula, such that :

$$
\text { S } \mid=\tau \#(\psi) \quad \text { iff } \quad \tau(\mathrm{S}) \mid=\psi
$$

The verification of ψ in the object structure $\tau(\mathrm{S})$ reduces to the verification of $\tau \#(\psi)$ in the given structure S.

Intuition : S contain all necessary information to describe $\tau(S)$; the MS properties of $\tau(S)$ are expressible by MS formulas in S

Consequence : If $\mathrm{L} \subseteq \operatorname{STR}(\Sigma)$ has a decidable MS satisfiability problem, so has its image under an MS transduction.

Other results

1) A set of graphs is VR -equational iff it is the image of (all) binary trees under an MS transduction. VR-equational sets are stable under MS-transductions.

A set of graphs has bounded clique-width iff it is the image of a set of binary trees under an MS transduction.
2) A set of graphs is HR-equational iff it is the image of (all) binary trees under an MS_{2} transduction.

HR-equational sets are stable under MS_{2}-transductions.
A set of graphs has bounded tree-width iff it is the image of a set of binary trees under an MS_{2} transduction.

Relationships between algebraic and logical notions

Algebraic notions	Algebraic characterizations	Logical characterizations	Closure properties
EQ			union, \cap Rec
	equation systems	MS-trans(Trees)	homo
	Val(REC(Terms))		MS-trans
REC			Boolean opns
	congruences	MS-def \subset REC	homo $^{-1}$
			MS-trans $^{-1}$

Signatures for graphs and hypergraphs:
HR: graphs and hypergraphs with "sources"
$V R$: graphs with vertex labels ("ports")
$V R^{+}$: $\quad V R$ with quantifier-free operations (ex. edge complement)

Links between MS logic and combinatorics:

Seese's Theorem and Conjecture

Theorem (Seese 1991): If a set of graphs has a decidable MS_{2} satisfiability problem, it has bounded tree-width.

Conjecture (Seese 1991): If a set of graphs has a decidable MS satisfiability problem, it is the image of a set of trees under an MS transduction, equivalently, has bounded clique-width.

Theorem (B.C., S. Oum 2004): If a set of graphs has a decidable $\mathrm{C}_{2} \mathrm{MS}$ satisfiability problem, it has bounded clique-width.
$M S=(B a s i c) M S$ logic without edge quantifications, $M S_{2}=M S$ logic with edge quantifications
$\mathrm{C}_{2} \mathrm{MS}=\mathrm{MS}$ logic with even cardinality set predicates. A set C has a decidable L satisfiability problem if one can decide for every formula in L whether it is satisfied by some graph in C
A) If a set of graphs C has unbounded tree-width, the set of its minors includes all k xk-grids (Robertson, Seymour)
B) If a set of graphs contains all kxk-grids, its MS_{2} satisfiability problem is undecidable
C) If C has decidable MS_{2} satisfiability problem, so has Minors(C), because $\mathrm{C} \longrightarrow \operatorname{Minors}(C)$ is an MS_{2} transduction.

Hence, if $\quad C$ has unbounded tree-width and a decidable MS_{2} satisfiability problem, we have a contradiction for the decidability of the MS_{2} satisfiability problem of Minors(C).

Proof of Courcelle-Oum's Theorem :

D) Equivalence between the cases of all (directed and undirected) graphs and bipartite undirected graphs.
A^{\prime}) If a set of bipartite graphs C has unbounded clique-width, the set of its vertexminors contains all " S_{k} " graphs
C^{\prime}) If C has decidable $\underline{\mathrm{C}}_{2} \mathrm{MS}$ satisfiability problem, so has Vertex-Minors(C), because $\mathrm{C} \longrightarrow$ Vertex-Minors (C) is a $\underline{\mathrm{C}}_{2} \mathrm{MS}$ transduction.
E) An MS transduction transforms S_{k} into the kxk-grid.

Hence $A^{\prime}+B+C^{\prime}+E$ gives the result for bipartite undirected graphs. Result with D.

Definitions and facts

Local complementation of G at vertex v
$\mathrm{G} * \mathrm{v}=\mathrm{G}$ with edge complementation of $\mathrm{G}\left[\mathrm{n}_{\mathrm{G}}(\mathrm{v})\right]$,
the subgraph induced by the neighbours of v
Local equivalence $\left(\approx_{\text {loc }}\right)=$ transitive closure of local complementation (at all vertices)

Vertex-minor relation :
$H \leq v M G: \Leftrightarrow H$ is an induced subgraph of some $G^{\prime} \approx{ }_{\text {loc }} G$.

Proposition (Courcelle and Oum 2007): The mapping that associates with G its locally equivalent graphs is a $\mathrm{C}_{2} \mathrm{MS}$ transduction.

Why is the even cardinality set predicate necessary?

Consider $\mathrm{G} * \mathrm{X}$ for $\mathrm{X} \subseteq \mathrm{Y}$:
u is linked to v in $G * X$
$\Leftrightarrow \quad \operatorname{Card}(X)$ is even

Definition of S_{k} : bipartite : $A=\{1, \ldots,(k+1)(k-1)\}, B=\{1, \ldots, k(k-1)\}$ for $j \in A, i \in B$: edg(i,j) $\Leftrightarrow \mathrm{i} \leq \mathrm{j} \leq \mathrm{i}+\mathrm{k}-1$

From S_{k} to Grid $_{k x k}$ by an MS transduction

1) One can define the orderings of A and B :

$$
x, y \text { are consecutive } \Leftrightarrow \operatorname{Card}\left(n_{G}(x) \Delta n_{G}(y)\right)=2
$$

2) One can identify the edges from $i \in B$ to $i \in A$, and from $i \in B$ to $i+k-1 \in A$ (thick edges on the left drawing)
3) One can create edges (e.g. from $1 \in A$ to $2 \in A$, from $2 \in A$ to $3 \in A$ etc...and similarly for B, and from $1 \in B$ to $4 \in A$, etc...) and delete others (from $4 \in B$ to $6 \in A$ etc...), and vertices like 7,8 in A , to get a grid containing Grid $_{\mathrm{kxk}}$

Corollary : If a set of directed acyclic graphs having Hamiltonian directed paths has a decidable MS satisfiability problem, then :
it has bounded clique-width,
it is the image of a set of trees under an MS transduction.

Proof: Since on these graphs a linear order is MS definable, MS and $\mathrm{C}_{2} \mathrm{MS}$ are equivalent.

The previously known techniques for similar results (in particular for line graphs or interval graphs, B.C. 2004) do not work in this case.

