Parallel Model Checking

Rodrigo Saad, Silvano Dal Zilio, Bernard Berthomieu, François Vernadat

LAAS Toulouse

Seminaire du pole SINC'2009 Toulouse April, 28 2009

Parallel Model Checking

- Introduction
- Multiprocessor Computer Architecture
- State Space Construction
- Considerations

Model Checking

Model Checking : Automatic System Analysis.

Verification :

- System Description
 - Behavior.
 - Architecture.
- Desired Property.
- Counter-Example.

Model Checking

Definition

Model Checking : Given a Kripke structure M = (S, R, L) that represents a finite-state concurrent system and a temporal logic formula *f* expressing some desired specification, find the set of all states in *S* that satisfy $f : \{s \in S \mid M, s \models f\}$

Two steps :

- State Space Construction (Kripke structure)
- Property Verification ({ $s \in S \mid M, s \models f$ })

Flynn's Taxonomy of Computer Architecture

Notion of a stream of information :

SISD : single-instruction single-data

Flynn's Taxonomy ...

 SIMD : single-instruction multiple-data MIMD : multiple-instruction multiple-data

MIMD Architecture

Shared Memory :

Distributed Memory :

SUN FIRE X4600 M2

Brutus :

- Shared Memory
- 8 Processors Dual Core AMD Opteron
- NUMA : Non-Uniform Memory Access
- Minimum hop distance : Enhanced Twisted Ladder

Enhanced Twisted Ladder

State Space Construction

Complexity :

- Irregular Problem
- Size is unknown by advance
- The model under consideration is a key performance issue

State Space Construction ...

Three stereotypical types of model[Ezekiel08] :

LAAS

Parallel Model Checking

Related Work - SIMD

State Space construction on a SIMD Machine :

- Caseli 1994
- Function Decomposition Model
 - Transition Firing
 - Reachability Graph Construction
 - Search Action
 - New State Creation

Related Work - MIMD Distributed Memory

Distributed State Space Generation

- Ciardo97m, Hoverkor99, Lerdo 99, Caseli99, Hubert01
- Message Passing Interface (MPI)
- Objective : Expand Memory
- All threads executes same program in parallel

Complexity

- Balance Workload
- Minimize Communication (Overhead)

Related Work - MIMD Distributed Memory

Partition Function is :

- *Proc* : $S \Rightarrow \{0, ..., N-1\}$
- Proc(s) is the owner of state s

And must have :

- Spatial Balance
- Locality
- Temporal Balance

Related Work - MIMD Distributed Memory

Partition Function can be :

- Static (User Provided)
- Oynamic

Example of a Partition Function :

•
$$M = \{PL_1, PL_2, ..., PL_n\}$$

•
$$C_s = \{PL_1, PL_5, PL_7\}$$

•
$$(\#PL_1 + q * \#PL_5 + q^2 * \#PL_7) \mod N$$

- $\#PL_n$ = number of tokens at place PI_n
- q is a prime number

Related Work - MIMD Distributed Memory

First Approximation :

- Orzan05
- Small approximation based on a set of abstraction interpretation

Related Work - MIMD Shared Memory

Complexity :

- Data Consistency
- Synchronization
- Thread Creation Overhead
- Bus Contention
- Data Race
- False Sharing

Related Work - MIMD Shared Memory

- Global Shared Storage Data
- Allmeier97 :
 - Storage Structure : Balance Tree with Splitting in advance
- Inggs02 :
 - Work Stealing

Considerations

Objectives :

- Bigger Models
- Speed up

Problematics

- Temporal Balance
- Memory Location

Storage Structure

1 - Global Storage Structure :

- Iow complexity
- better "all case" temporal balance
- irregular memory distribution
- synchronization and locks overhead

Storage Structure

1 - Local Storage Structure per processor :

- high complexity (Partition Function)
- worst "all case" temporal balance
- uniform memory distribution

LAAS

Mixed of Distributed and Shared Solution :

- Local Storage Structures
- Small amount of shared memory
- Heuristic Policies for On-the-fly Temporal Balance

Thankyou OLC Group/LAAS-CNRS rsaad@laas.fr

Parallel Model Checking