

Safety and Time Critical Middleware for future Modular Avionics Platform

Seminar SINC -- 28/04/2009

- □ ANR research project.
- □ Partners: Airbus, CEA, IRIT, LAAS, ONERA, QoS Design.

The Architecture

The IMA Architecture

Integrated Modular Avionics

- Interconnection of several modules/embedded systems on one platform.
- Sharing resources and bandwidth.
- Several computing modules capable of supporting numerous applications of different criticality.
- Modules include:
 - CPM: Core processing modules.
 - CPIOM: Core processing and I/O modules.
 - RDC: Remote data concentrator.

Avionics Applications and Partitions

Several applications resident on a computer system

- Applications broken up to one or more partitions (pieces of code, data,...) based on criticality variation of its operation
- Separation in resources and influence by communication only
- Communication with partitions resident on other computer systems is through AFDX network via ports and an interface (End System)

Partitions

- Partitions have no priority and are periodic
- Scheduling algorithm of partitions is static with fixed periodicity
- Each partition allocated a window for execution

Processes

- Partitions comprised of one or more processes
- Processes have priorities defined statically, hence can preempt each other
- Processes may be periodic, aperiodic or sporadic
- Processes allowed to execute in corresponding partition window
- Processes of same partition share resources and communicate via buffers, semaphores,...
- Processes belonging to different partitions communicate via sampling/queuing ports

Software Development Cycle (AIRBUS)

Objectives

Objectives

- Initial demand: develop a simulation and evaluation tool which is the primary requirement of our work
- Identifying the goals of the simulation
 - Feasibility of a system that is designed to be so
- Propose the introducion of new functional aspects to our tool
 - Aiding the designer in constructing the system
 - Resource mapping and scheduling
 - Propose possible and optimal solutions

Contribution (aimed for)

An Example

Environment

Partition Example

Application set: For simplicity, only memory as resource constraint

Distribution of partitions

Choose suitable distribution respecting constraints

Process Scheduling Verification

Process execution simulation:

Task name=proc_alt_P1	oc	
Task name=verify_P1		
Task name=display_P1 Period= 50; Capacity= 1; Deadline= 50; Start time= 0; Priority= 2; Cpu=pr		
Task name=mon_alt_P1		
Task name=proc_pos_P2	roc	
Task name=verify_P2 Period= 25; Capacity= 3; Deadl ne= 25; Start time= 0; Priority= 2; Cpu=proc		
Task name=display_P2 Pericd= 25; Capacity= 1; Deadline= 25; Start time= 0; Priority= 4; Cpu=pr		
Task name=write_log_P2	roc	
Task name=hlth_mon_P3 Period= 50; Capacity= 1; Deadline= 50; Start time= 0; Priority= 1; Cpu=	roc	
Task name=display_P3 Pericd= 50; Capacity= 5; Dealline= 50; Start time= 0; Priority= 2; Cpu=pr	c	

Conclusion

Conclusion

- Define applications + attributes
- Provide a model for our constraints (partitions, resources, network, etc...)
- Study possible algorithms to solve our distribution and scheduling problem [thesis-Roux].
- After corresponding partition configuration, wait for process definition.
 - Simulate the execution of processes with the above mentioned partition configuration.
- Prospective \rightarrow Break down partitions into functions