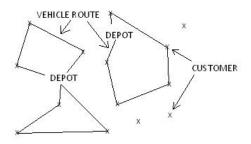
A Work Domain Analysis for the Vehicle Routing Problem

B. GACIAS¹, P. LOPEZ¹, J. CEGARRA²

¹LAAS-CNRS; Université de Toulouse, France ² CLLE; Université de Toulouse, France {bgacias,lopez}@laas.fr, julien.cegarra@univ-jfc.fr

HOPS 2008



- Introduction
- Proposed approach
- Scenario
- Summary and further work

- Introduction
- Proposed approach
- Scenario
- Summary and further work

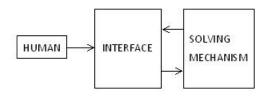
Introduction

- Agressive competition → reactivity to customer demands (minimum quality of service)
- Vehicle Routing Problems (VRPs) optimisation
- VRP : Determine the routes to be performed by a fleet of vehicles to serve a given set of customers

Problem statement

- Take into account the real-world routing environment constraints: capacity, time windows,...
- OR: methods to efficiently solve the variants of VRPs [Toth and Vigo, 2002]
- Two important limitations :
 - Human factors are not much considered in the modelling phase of the problem
 - Models and solving systems are not ready to deal with the rapid changing situations

Problem statement

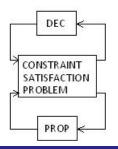

Goals for the VRP Decision Support System (DSS)

- The resulting solving tool and the human have to share a common view of the field (objects)
- The resulting solving tool has :
 - to deal with the unexpected
 - to resist the long-term changes of the situation
- The human could act between the real problem and the solving mechanism

- Introduction
- Proposed approach
- Scenario
- Summary and further work

Decision Support System

- We propose an interdisciplinary approach for the DSS
- Two different components :
 - Solving Mechanism based on Operational Research techniques
 - Human Interface based on Work Domain Analysis and where the human aspects are considered



Solving mechanism

Solving Mechanism: based on Constraint Programming (CP) and other solving technics [Desrochers et al., 1998]

Properties of CP:

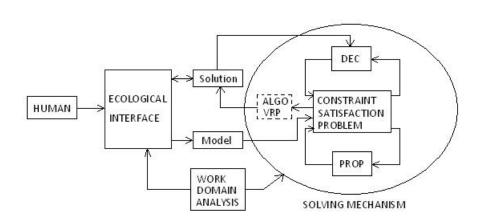
- Analysis and solving mechanisms can be separately considered
- Each type of constraint can be particularly processed
- We may take into account side constraints and user's preferences → incrementally adding new constraints

Work Domain Analysis

Human Interface: based on the Abstraction Hierarchy (AH) [Vicente, 1999; Rasmussen et al., 1994]

Properties of AH:

- All the work constraints are stressed → the system is ready to deal with the unexpected
- \bullet Tasks are not related to specific actors \to do not limit the scope
- An Ecological Interface design is derived from the AH


AH for the VRP

Tasks allocation

Tasks allocation:

- Solving Mechanism :
 - Select the algorithms to be useful
 - Propose and evaluate a set of feasible solutions
 - Re-evaluate the modified solutions
- Human tasks
 - \bullet Restrictions of the problem \to select which constraints are activated
 - Choose the solving strategy
 - Modify all problem data
 - Modify the proposed solutions

Decision Support System

- Introduction
- Proposed approach
- Scenario
- 4 Summary and further work

Scenario

Example

- 4 customers $(C_i; d_i)$, 2 vehicles $(V_i; Q = 7)$, 1 depot, 2 drivers (D_i)
- Set of constraints

	Customers		Drivers	
	TW	d _i		TW
1	[4,8]	2	D1	[0,4] U [8,12]
2	[5,10]	3	D2	[0,8]
3	[0,2] U [10,12]	2		
4	[8,12]	5		

Allocation vehicle – customer 4 → V2

User preferences: All customers have to be served

AH for the example → Model of the problem

Scenario

Solving Mechanism

```
    Customers
    Drivers

    TW
    d<sub>i</sub>
    TW

    1
    [4,8]
    2
    D1
    [0,4] U [8,12]

    2
    [5,10]
    3
    D2
    [0,8]

    3
    [0,2] U [10,12]
    2

    4
    [8,12]
    5
```

Allocation \vee ehicle – custom er $4 \rightarrow \vee 2$

User preferences: All customers have to be served

- Constraint Propagation :
 - C_4 is allocated to $V_2 o D_1$ is assigned to V_2 (TW)
 - ullet C_1 can not be served by D_1 (V_2) because of TW constraints
 - Capacity (7) \rightarrow $V_1:\{1,2,3\},\ V_2:\{4\}$ or $V_1:\{1,2\},\ V_2:\{3,4\}$

Scenario

Allocation vehicle - customer 4 → V2

User preferences: All customers have to be served

- 2 options : V_1 : {1,2,3}, V_2 : {4} or V_1 : {1,2}, V_2 : {3,4}
- Decisions :
 - D_2 rings before the start : "he is late" \rightarrow User analysis : D_2 could have problems to serve C_3
 - The user decide to allocate C_3 to D_1 (V_2)

AH Decision

- Constraint Propagation :
 - One option $\to V_1 : \{1,2\}, V_2 : \{3,4\}$
- The DSS propose and evaluate the set of solutions (4 solutions)

- Introduction
- Proposed approach
- Scenario
- Summary and further work

Summary

- We propose an architecture for a VRP Decision Support System
- Interdisciplinary approach: Human factors and Operational Research techniques are considered for the DSS design
- We have presented the WDA (Abstraction Hierarchy) for the VRP

Further work

- Design the ecological interface architecture for a real-world case study
- Improve the solving mechanism
- Evaluate this approach against two other similar methods:
 - Cognitive Work Analysis for industrial scheduling [Higgins, 1999]
 - Mixed-initiative for scheduling [Smith and Lassila, 1994]