An interdisciplinary method for a generic vehicle routing problem decision support system

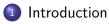
B. GACIAS¹, P. LOPEZ¹, J. CEGARRA²

¹LAAS-CNRS; Université de Toulouse, France ² CLLE; Université de Toulouse, France {bgacias,lopez}@laas.fr, julien.cegarra@univ-jfc.fr

IESM 2009

Gacias, Cegarra, Lopez (LAAS, CLLE) An interdisciplinary method for a VRP DSS

IESM 2009 1 / 20

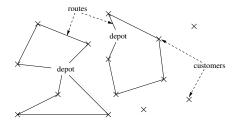

Introduction

Proposed approach

Summary and further work

Outline

2 Proposed approach



< 行

< ∃ ►

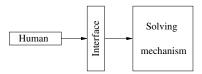
Introduction

- Agressive competition → reactivity to customer demands (minimum quality of service)
- Vehicle Routing Problems (VRPs) optimisation
- VRP : Determine the routes to be performed by a fleet of vehicles to serve a given set of customers

- Take into account the real-world routing environment constraints : capacity, time windows,...
- OR : methods to efficiently solve the variants of VRPs [Toth and Vigo, 2002]
- Two important limitations :
 - Human factors are not much considered in the modelling phase of the problem
 - Models and solving systems are not ready to deal with the rapid changing situations

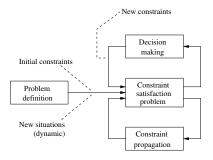
Goals for the VRP Decision Support System (DSS)

- The resulting solving tool and the human have to share a common view of the field (objects)
- The resulting solving tool has :
 - to deal with the unexpected
 - to resist the long-term changes of the situation
- The human could act between the real problem and the solving mechanism


Proposed approach

Decision Support System

- We propose an interdisciplinary approach for the DSS
- Two different components :
 - Solving Mechanism based on Operational Research techniques
 - Human Interface based on Work Domain Analysis and where the human aspects are considered



Solving mechanism

Solving Mechanism : based on Constraint Programming (CP) and other solving technics [Desrochers et al., 1998]

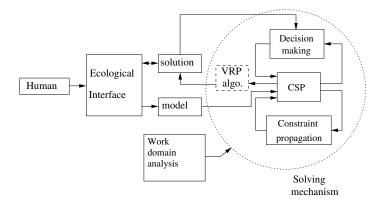
Properties of CP :

- Analysis and solving mechanisms can be separately considered
- Each type of constraint can be particularly processed

∃ ▶ ∢

Human Interface : based on the Abstraction Hierarchy (AH) [Vicente, 1999; Rasmussen et al., 1994]

Properties of AH :


- \bullet All the work constraints are stressed \rightarrow the system is ready to deal with the unexpected
- $\bullet\,$ Tasks are not related to specific actors $\rightarrow\,$ do not limit the scope
- An Ecological Interface design is derived from the AH

AH for the VRP

Tasks allocation :

- Solving Mechanism :
 - Select the algorithms to be useful
 - Propose and evaluate a set of feasible solutions
 - Re-evaluate the modified solutions
- Human tasks
 - $\bullet~$ Restrictions of the problem \rightarrow select which constraints are activated
 - Choose the solving strategy
 - Modify all problem data
 - Modify the proposed solutions

Decision Support System

IESM 2009 12 / 20

Gacias, Cegarra, Lopez (LAAS, CLLE) An interdisciplinary method for a VRP DSS

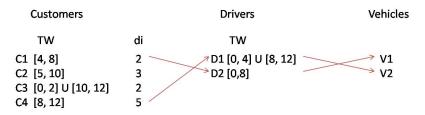
IESM 2009 13 / 20

< ∃ ►

Scenario

Example

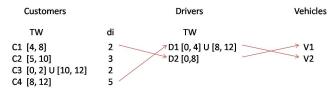
- 4 customers (C_i; d_i), 2 vehicles (V_i; Q = 7), 1 depot, 2 drivers (D_i)
- Set of constraints


Customers		Drivers
тw	di	тw
C1 [4, 8]	2	D1 [0, 4] U [8, 12]
C2 [5, 10]	3	D2 [0,8]
C3 [0, 2] U [10, 12]	2	
C4 [8 12]	5	

Allocation constraint Vehicle-Customer (V2-C4) User preference: All customers have to be served

AH for the example \rightarrow Model of the problem

IESM 2009 14 / 20


Solving Mechanism

- Constraint Propagation :
 - C_4 is allocated to $V_2 \rightarrow D_1$ is assigned to V_2 (TW)
 - C_1 can not be served by D_1 (V_2) because of TW constraints
 - Capacity (7) \rightarrow V₁ :{1,2,3}, V₂ : {4} or V₁ :{1,2}, V₂ : {3,4}

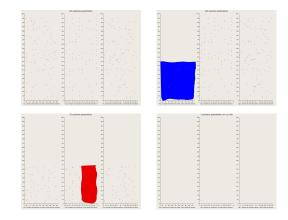
· · · · · · ·

Scenario

- 2 options : V_1 :{1,2,3}, V_2 : {4} or V_1 :{1,2}, V_2 : {3,4}
- Decisions :
 - D₂ rings before the start : "he is late" → User analysis : D₂ could have problems to serve C₃

IESM 2009

16 / 20


• The user decides to allocate C_3 to D_1 (V_2)

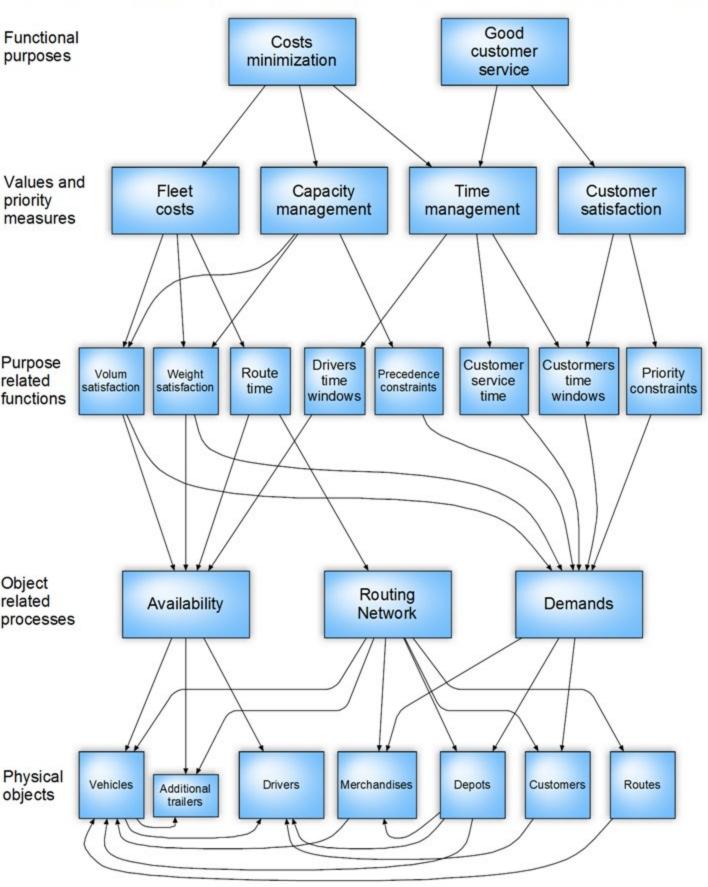
AH Decision

- Constraint Propagation :
 - One option \rightarrow V_1 :{1,2}, V_2 : {3,4}
- The DSS proposes and evaluates the set of solutions

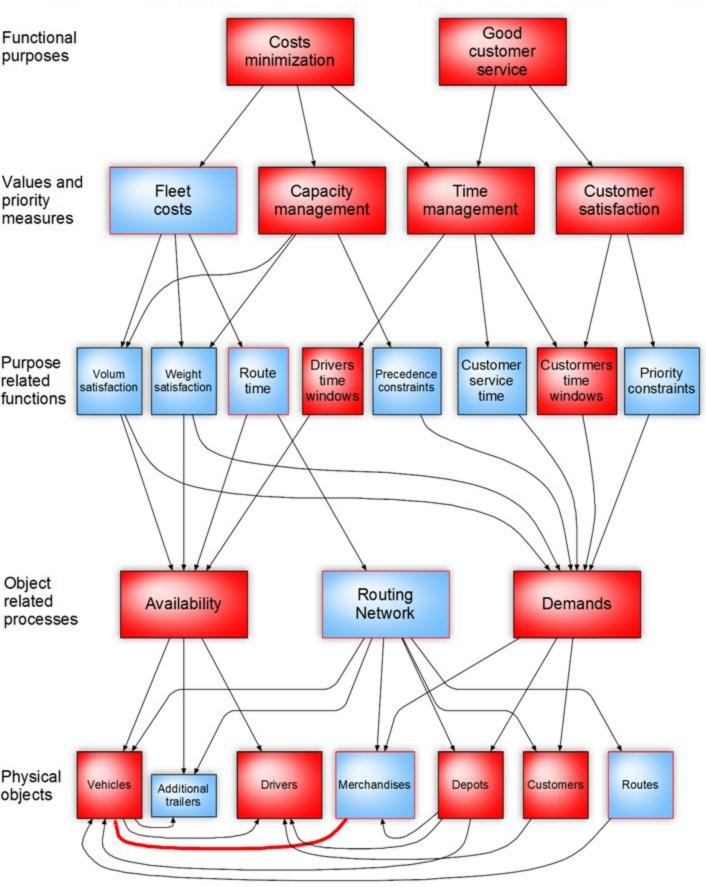
Ecological Interface

- Selection of solution support tool
- Graphical tool with user preferences to guide the solution space search

2 Proposed approach



Summary and further work


- We propose an architecture for a VRP Decision Support System
- Interdisciplinary approach : Human factors and Operations Research techniques are considered for the DSS design
- We have presented the WDA (Abstraction Hierarchy) for the VRP

- Design the ecological interface architecture for a real-world case study
- Improve the solving mechanism : optimisation methods, model inversion,...

WORK DOMAIN ANALYSIS FOR THE VEHICLE ROUTING PROBLEM

WORK DOMAIN ANALYSIS FOR THE VEHICLE ROUTING PROBLEM

