Limited Discrepancy-Based Neighborhood Search for Parallel Machine Scheduling

B. Gacias, C. Artigues and P. Lopez

LAAS-CNRS, Université de Toulouse, France emails: {bgacias,artigues,lopez}@laas.fr

SCRO/JOPT 2008

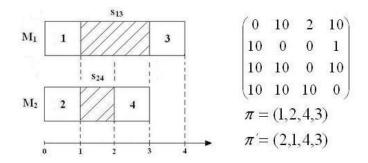
B. Gacias, C. Artigues and P. Lopez (LAAS)

Tree and Local Search

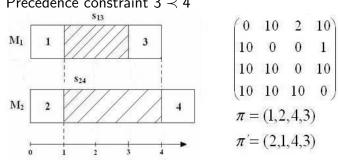
SCRO/JOPT 2008 1 / 20

Introduction

- 2 Problem statement
- Oiscrepancy-based search and local search methods
- 4 Branching strategy and node evaluation
- Computational experiments and conclusions


1 Introduction

- 2 Problem statement
- 3 Discrepancy-based search and local search methods
- 4 Branching strategy and node evaluation
- 5 Computational experiments and conclusions


- Parallel machine scheduling problem [Pearn et al., 2007]
- Solved by tree and local search methods [Néron et al., 2006]
- Problem with setup times and precedence constraints between jobs
- Difficulty for list scheduling algorithm [Hurink & Knust, 2001]

• The problems can't be efficiently solved by a list scheduling algorithm

Example

• Precedence constraint $3 \prec 4$

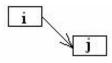
- π and π' don't respect the precedence constraint
- Branching Structure: complete enumeration (best list of jobs and best resource allocation)

1 Introduction

2 Problem statement

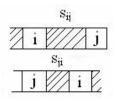
3 Discrepancy-based search and local search methods

4 Branching strategy and node evaluation


5 Computational experiments and conclusions

Decision variables

Optimization criteria


- Jobs: $J = \{1, ..., n\}$
- Resources/Machines: $M = \{M_1, \ldots, M_m\}$
- For every job *i*: p_i , r_i , d_i
- Precedence constraints
- Setup times sij

- Jobs: $J = \{1, ..., n\}$
- Resources/Machines: $M = \{M_1, \ldots, M_m\}$
- For every job *i*: *p_i*, *r_i*, *d_i*
- Precedence constraints

• Setup times sij

- Jobs: $J = \{1, ..., n\}$
- Resources/Machines: $M = \{M_1, \ldots, M_m\}$
- For every job *i*: *p_i*, *r_i*, *d_i*
- Precedence constraints
- Setup times sij

Decision variables

• $S_i (C_i = S_i + p_i)$

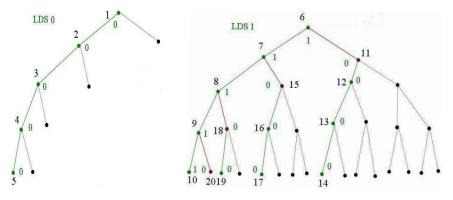
Optimization criteria

- min $\sum C_i$ [Chu et al., 2005]
- min L_{max} [Uzsoy & Velásquez, 2006]

1 Introduction

2 Problem statement

3 Discrepancy-based search and local search methods

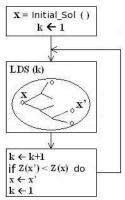

4 Branching strategy and node evaluation

5 Computational experiments and conclusions

Discrepancy-based search methods

Limited Discrepancy Search (LDS) [Harvey & Ginsberg, 1995]

- Iterative tree search method
- Instantiation heuristic to guide the search (discrepancies)

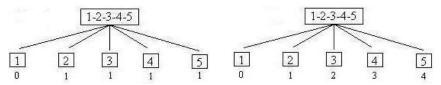

Methods based on LDS in order to increase efficiency:

- Improved LDS (ILDS) [Korf, 1996]
- Depth-bounded Discrepancy Search (DDS) [Walsh, 1997]
- Discrepancy-bounded Depth-First Search (DDFS) [Beck & Perron, 2000]
- Yet Improved LDS (YIELDS) [Karoui et al., 2007]

Large neighborhood local search based on LDS

Climbing Discrepancy Search (CDS) [Milano & Roli, 2002]

- Neighborhood exploration by LDS
- Discrepancies around the best current solution x


CDDS: the neighborhood is also limited by the depth in the tree [Ben Hmida et al., 2007]

B. Gacias, C. Artigues and P. Lopez (LAAS)

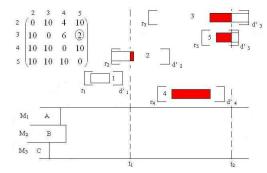
Large neighborhood local search based on LDS

We propose two methods:

- Hybrid Discrepancy CDDS
 - CDS search until k discrepancies
 - 2 $k \leftarrow k+1$
 - ODDS search (not only on top of the tree), to restrict the neighborhood
- Mix Counting CDS
 - $\bullet~$ Different counting discrepancies ways $\rightarrow~$ Depth tree level

1 Introduction

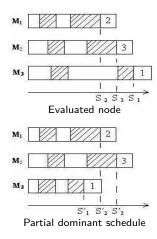
- 2 Problem statement
- 3 Discrepancy-based search and local search methods


4 Branching strategy and node evaluation

5 Computational experiments and conclusions

- Initial heuristic
 - Earliest Start Time (EST) \rightarrow minimize setup times
- Branching strategy
 - DDFS (Discrepancy-bounded Depth First Search)
 - LDS-top
 - LDS-low

Node evaluation


- min $\sum C_i$: Lower bound [Chu et al., 2005]
- min L_{max} : Energetic reasoning [Lopez et al., 1992]
 - In a time interval $\Delta = [t_1, t_2]
 ightarrow {\sf E}_{consumed} + {\sf E}_{setup} \leq {\sf E}_{produced}$
 - $[r_i, d'_i]$, time windows for the set of not yet allocated jobs

 $E_{produced} = m \times (t_2 - t_1)$ $E_{consumed} = \sum_i E_{min}, i \in F$ $E_{setup} \rightarrow k - m \text{ shortest}$ $s_{ij}, i, j \in F$ where F is the set of
jobs that $E_{consumed} > 0$

Node evaluation

Dominance rules for local search

- Goal: To find a partial dominant schedule $(S'_i < S_i)$ and $S'_j \leq S_j$ for the rest of the last jobs executed on every resource)
- It has to be included in the explored neighborhood (authorised discrepancies)

1 Introduction

- 2 Problem statement
- 3 Discrepancy-based search and local search methods
- 4 Branching strategy and node evaluation
- 5 Computational experiments and conclusions

Comparison on $P|r_i, q_i|C_{max}$ problems [Néron et al.](n = 100, $m = 10, p_i = [1 - 10]$)

$CPU_{limit} = 30 \ s$	Best Solution	Best Sol. Strict	CPU(s)
$LDS_{z=1}^{TW}$	1	0	29.64
$LDS_{z=2}^{CHR}$	7	0	28.40
$BS_{\omega=3}^{TW}$	25	3	20.37
$BS^{CHR}_{\omega=4}$	22	0	28.40
CDS	35	6	30 (8.03)
HD-CDDS	38	9	30 (7.02)

э

Computational experiments

• ECT rule evaluation

- $\bullet\,$ We find the optimal solution for 85 % of instances
- Consider the job order discrepancies separately of machine allocation discrepancies
- Comparison with local search methods ($n = 100, m = \{2, 4\}$,

 $s_{ij} = \{[1-10], [1-20]\}, \ p_i = \{[1-10], [1-5]\}, \ OS = \{0.75, 0.5, 0.25\})$

$\sum C_i$	Best Solution	Mean	L _{max}	Best Solution	Mean
		Dev.			Dev.
CDS	12 (20.0 %)	1.4 %	CDS	18 (30.0 %)	2.5 %
CDDS	2 (3.3 %)	4.8 %	CDDS	0 (0.0 %)	11.6 %
HD-CDDS	27 (45.0 %)	0.9 %	HD-CDDS	36 (60.0 %)	1.8 %
MC-CDS	40 (66.7 %)	1.0 %	MC-CDS	34 (56.7 %)	1.7 %

Conclusions and further work

- *LDS-top* branching strategy and *Binary counting* mode are the best strategies for *LDS* implementation
- Hybrid local-tree discrepancy based methods are efficient for parallel machine scheduling problems
- The computation of upper bounds improve the results (EST)
- We have efficiently introduced the setup times in the energetic reasoning and we have adapted the dominance rules for local search
- VRP problem: strategies and resolution methods