

Stability in waste collection problem : a case study

Frédérique BANIEL (University of Toulouse : LGP / ENIT - MOGISA / LAAS-CNRS) Marie-José HUGUET (University of Toulouse : MOGISA / LAAS-CNRS) Thierry VIDAL (University of Toulouse : LGP/ ENIT)

Odysseus 26-29 May 2009

Plan

- **1. Problem under study**
- 2. Modeling
- 3. Algorithms proposed
- 4. Experimentations
- **5. Conclusion et Open issues**

Context

 Goal : Maintain stability in the waste collection routes when

• **Reorganization** of routes is necessary in a local authority

- 4 main objectives :
 - Collection costs
 - Service quality for users
 - Environnemental impact
 - Employees works conditions

• Partnership :

• Local authority : **CAM** problem and datas

Context

• Organisation of the local authority :

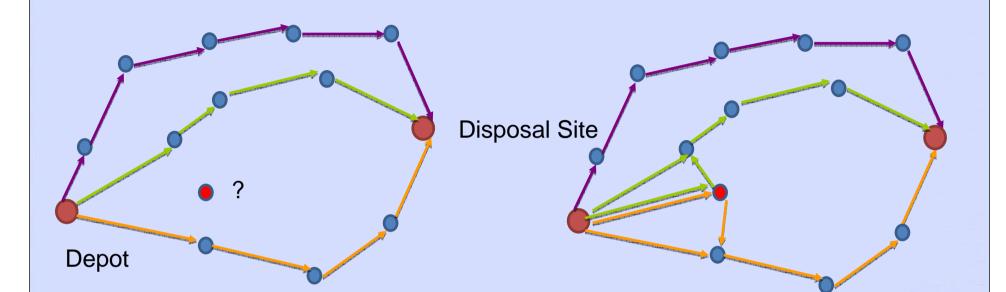
• Single depot and disposal site.

• High Constraints :

- All houses must be collected,
- Vehicle number,
- Maximal capacity for each vehicle,
- Time windows,
- Work time for employees is bounded.

• Modeling : Vehicle Routing Problem with Time Windows or VRPTW

Vehicle Routing Problem with Time Windows


$$\begin{aligned} \text{Minimize}: & \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} \sum_{k=1}^{m} x_{ij}^{k} \quad (eq1) \\ \text{Constraints}: \\ & \sum_{i=1}^{n} x_{ij}^{hk} = y_{j}^{hk} (j = 2, ...n; k \in K; h \in H) \\ & \sum_{i \in Y}^{n} t_{i}^{hk} \cdot y_{i}^{hk} = y_{i}^{hk} (i = 2, ...n; k \in K; h \in H) \\ & \sum_{i \in Y}^{n} t_{i}^{hk} \cdot y_{i}^{hk} + \sum_{i \in Y}^{n} \sum_{j \in Y}^{n} x_{ij}^{hk} \cdot t_{ij}^{k} \leq T(k \in K; h \in H) \\ & \sum_{i \in Y}^{n} q_{i}^{hk} \cdot y_{i}^{hk} \leq Q^{k} \ (k \in K; h \in H) \\ & \sum_{i \in Y}^{n} x_{ij}^{hk} \leq |S| - 1(S \subset Y'; 2 \leq |S| \leq n - 1; k \in K; h \in H) \\ & \sum_{(i,j) \in S^{2}}^{n} x_{ij}^{hk} \leq y_{i}^{hk} \cdot x_{i}^{hk} \leq y_{i}^{hk} \times \left(lft_{i}^{h} - t_{i}^{hk} \right) \quad st_{i}^{hk} + t_{i}^{hk} + t_{ij}^{k} - M \times \left(1 - x_{ij}^{hk} \right) \leq st_{j}^{hk} \end{aligned}$$

Problem

Conclusion

Presentation of dynamic problem

• Reorganization :

- Population increase about 2% per year,
- Waste quantity increase about 2% per year and per inhabitant,
- Methods proposed to update routes

Problem

Methods

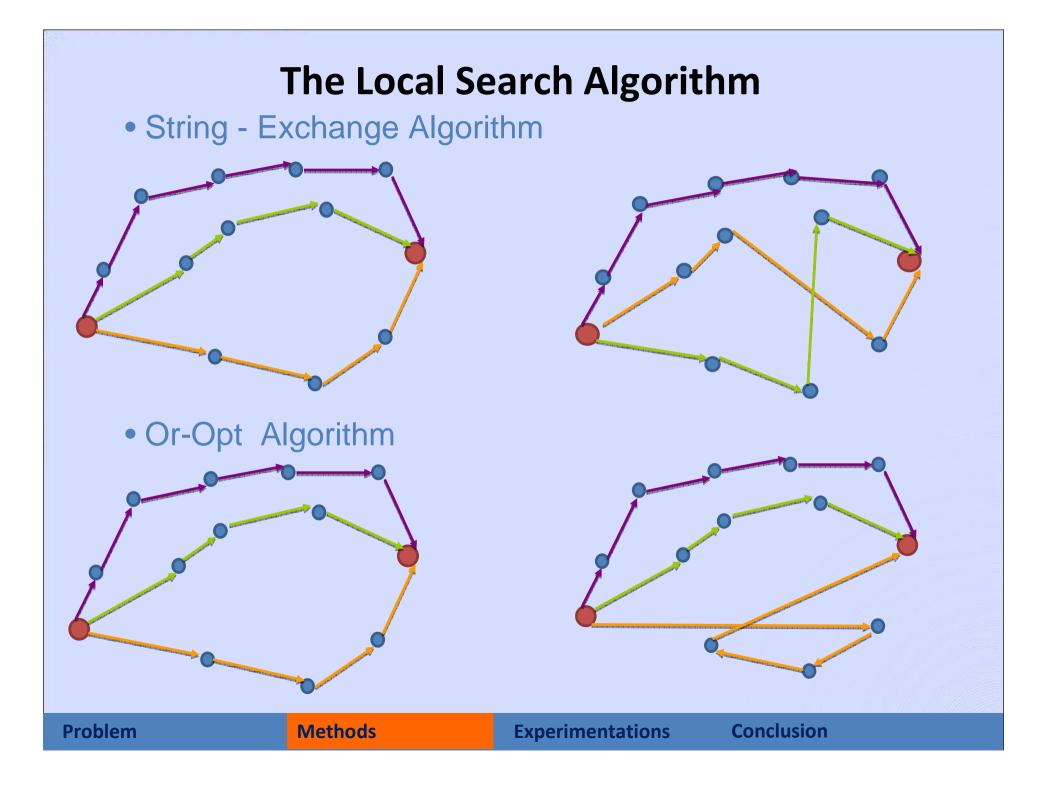
Experimentations

Conclusion

Criteria for the reorganization

GOAL : obtain a solution with a low cost and which disturb as low as the initial solution

- Collection costs (= distance)
- Stability
 - In general :
 - Gap in distance and in work time.
 - Service quality (= users point of view) :
 - modification of collection hour → hour gap.
 - Work conditions (= employees point of view) :
 - Adding/deleting collection points in collection routes,
 - Collection order moved.
 - ➔ Composition Gap and order gap


Methods used

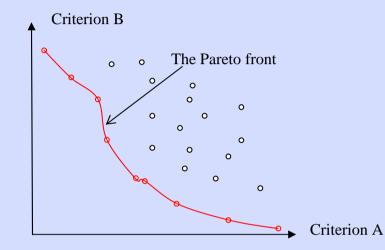
• **Problem 1 : Insertion of new nodes**

- 11 : Insert in the nearest neighborhood in respecting constraints,
- I2 : I1 + local search (string -exchange) between routes affected by insertion and its close routes,
- I3: I1 + local search (string–exchange + or-opt) between all pairs of routes
- I4 : I1 + tabu search,
- I5 : I1 + bi-objective tabu search,
- 16 : building from scratch.

• Problem 2 : Quantity increase

- I1 : Find an admissible solution,
- I2: I1 + local search (string–exchange + or-opt) between all pairs of routes
- I3 : I1 + tabu search,
- I4 : I1 + bi-objective tabu search,
- 15 : building from scratch.

The Tabu Search


•Mono or Multi-objective algorithm

•Criteria used : the distance and stability

•Steps of the algorithm :

- 1. From an initial solution \rightarrow neighbourhood
- 2. Deletion of the solutions which are in both the Tabu list and the neigbourhood
- 3. Creation of the Pareto front from the new neighbourhood
- 4. Random selection in the Pareto front \rightarrow new initial solution
- 5. Add new initial solution to the Tabu list

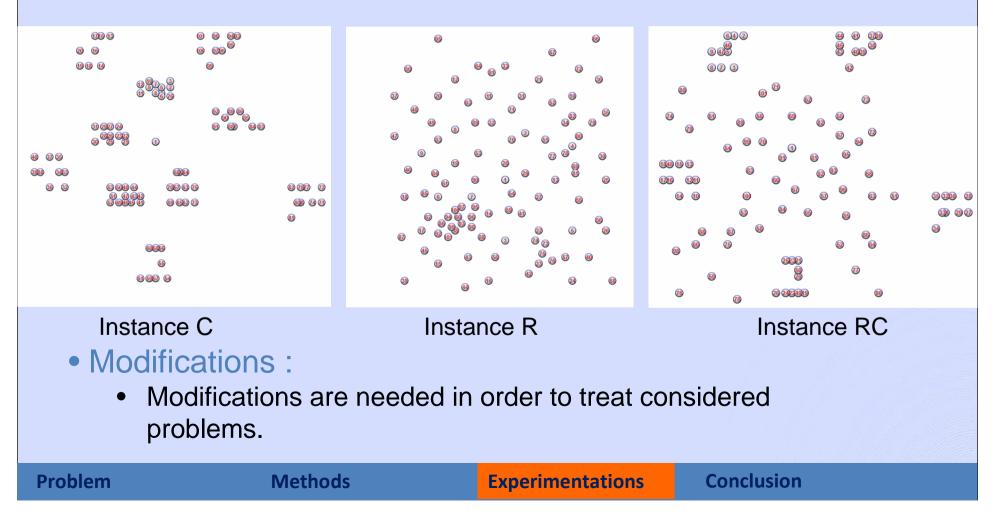
The Multi-Creteria Tabu Search

• Keep only one solution :

• Compromise between distance and stability.

Problem

Methods


Experimentations

Experimentations

• Instances used :

- Solomon's instances : 3 types C, R and RC,
- 100 nodes to collect,
- VRP Time Window.

Experimentations

Insertion new nodes

• Modifications :

- Delete nodes at random → Initial solution
- Insert nodes deleting → New solution

			Stability					
			General		Users	Employee		
Instance	Method	Distance	Distance Gap	Time Gap	Hour Gap	Composition Gap	Order Gap	
C1	1	1052	166	512	906	9	8	
	2	1015	146	510	1654	12	10	
	3	997	149	504	1594	13	10	
	4	985	131	695	3136	13	21	
	5	1002	146	663	2641	20	21	
	6	864	116	689	5911	13	31	

Experimentations

Quantity improving

- Modifications :
 - Decrease of quantity in 10 nodes about 20% → Initial Solution
 - Increase their quantity → New Solution

			Stability					
			General		Users	Employee		
Instance	Method	Distance	Distance Gap	Time Gap	Hour Gap	Composition Gap	Order Gap	
C1	1	916	133	110	66	1	0	
	2	869	60	360	4880	1	26	
	3	866	84	426	2648	12	19	
	4	889	41	217	2048	2	14	
	5	864	61	325	5217	0	26	

Problem

Conclusion and open issues

• We propose methods :

- To insert new nodes,
- To update quantity in nodes.

• Results :

- Heuristics methods
- Metaheuristic methods
- Multi-criteria methods

•Perspectives :

• Develop multi-criteria methods in choosing different compromize between criteria.

Problem

Methods

Experimentations

Conclusion