

Faculté des Sciences de Tunis

DISCREPANCY AND BACKJUMPING HEURISTICS FOR FLEXIBLE JOB SHOP SCHEDULING

BEN HMIDA A., HAOUARI M., HUGUET M.J., LOPEZ P.

LAAS-CNRS, Toulouse, France & ROI, Ecole Polytechnique de Tunisie, Tunisia

PMS'08 ISTANBUL

OUTLINE

Problem description

Discrepancy-based methods

- Limited Discrepancy Search (LDS)
- Climbing Discrepancy Search (CDS)

Proposed discrepancy-based method and its adaptation for the problem under consideration

Numerical results

Conclusion and further works

1. PROBLEM DESCRIPTION (1/3)

1. **PROBLEM DESCRIPTION (2/3)**

- □ J={1,..., n} jobs
- \square M={1,..., m} machines
- **D** $J_i = \{O_{i,1}, O_{i,2}, \dots, O_{i,ni}\}$
- $\square M_{i,j} \subseteq M (\forall i, \bigcap M_{i,j} \neq \emptyset)$

One operation at a time on a machine

- One machine at a time by operation
- No preemption

- Objective: Minimize the makespan $C_{max} = \max(ct_j)$
- □ Complexity: JMPM || C_{max} is Strongly NP-hard [Brucker, 2004]

1. PROBLEM DESCRIPTION (3/3)

Literature review

Exact algorithms

 $(JMPM/n=2/C_{max})$

Brucker and Schlie (1990)

Jurisch (1992)

Heuristics

Mono-criteria

Mastrolilli and Gambardella (2000)

Ho, Tay and Lai (2007)

Pezella, Morganti and Ciaschetti (2007)

Multi-criteria

Zhang and Gen (2005)

Gao, Gen, Sun and Zhao (2007)

Vilcot (2007)

Gao, Sun and Gen (2008)

So... systematically introduce discrepancies as needed to find solution

2. DISCREPANCY-BASED METHODS (2/3)

Limited Discrepancy Search (LDS) [Harvey & Ginsberg 1995]

 $\begin{array}{l} \underline{Algorithm} \\ k \leftarrow 0 \\ kmax \leftarrow N \\ I \leftarrow Initial_instantiation() \\ While no_solution() and (k \leq kmax) do \\ k \leftarrow k+1 \\ -- Generate leaves at discrepancy k from I \\ -- Stop when a solution is found \\ I \leftarrow compute_Leaves (I, k) \end{array}$

End while

3. Proposed Discrepancy-based Methods: Adaptation for the problem under consideration (1/3)

Adaptation of discrepancy:

Strategy:

- Select a job using job selection heuristic: EST-LDJ
- Allocate a resource using a *heuristic for assignment of operations to machines: ECT*
- Fix a start time
- Applying the forward checking
 - set Starting time of the following operation
 - Availability date of the chosen resource

3. Proposed Discrepancy-based Methods: Adaptation for the problem under consideration (2/3)

- Applying discrepancy on promising choice points chosen by using two types of *backjumping heuristics*:
 - 1. Permutation of two adjacent critical operations carried out by the same resource (discrepancy on selection variable). (van Laarhoven et al., 1992)
 - 2. Replacement of a critical operation on another resource (discrepancy on allocation variable but restricted to critical operations).

3. Proposed Discrepancy-based Methods: Adaptation for the problem under consideration (3/3)

Applying discrepancy only at the top of the tree

Limit the tree search expansion

Depth-bounded Discrepancy Search (DDS)

+ Climbing Discrepancy Search

Climbing Depth-bounded Discrepancy Search (CDDS = DDS + CDS)

PMS'08 ISTANBUL

=

4. Numerical results (1/3)

Test beds

Brandimarte's benchmarks

-- 10 problems

-- N=[10,20]; M=[4,15]; n_i =[5,15]

Hurink's benhmarks

-- 129 problems (43 JSP)

-- Edata, Rdata, Vdata: N=[6,30]; M=[5,15]

Mastrolilli and Gambardella's results and lower bounds

Results

% deviation =
$$\frac{C \max_best - LowerBound}{LowerBound} \times 100$$

PMS'08 ISTANBUL

4. Numerical results (2/3)

Table 1. Comparison with the Tabu Search of Mastrolilli and Gambardella (M.G.) on 10 FJSP instances from Brandimarte

instances	n	m	LB	<i>M.G.</i>	CDDS	%dev	CPU(M.G.)	CPU(CDDS)
Mk01	10	6	36	40	40	0.0	0.01	0.1
Mk02	10	6	24	26	26	0.0	0.73	0.2
Mk03	15	8	204	204*	204*	0.0	0.01	0.2
Mk04	15	8	48	60	60	0.0	0.08	0.03
Mk05	15	4	168	173	182	5.2	0.96	0.2
Mk06	10	15	33	58	60	3.4	3.26	0.1
Mk07	20	5	133	144	139	-3.5	8.91	0.3
Mk08	20	10	523	523*	523*	0.0	0.02	0.8
Mk09	20	10	299	307	307	0.0	0.15	0.4
Mk10	20	15	165	198	212	7.1	7.69	0.3
Average						1.2	2.18	0.26

4. Numerical results (3/3)

Table 2. Deviation percentage over the best known lower bound

Data set	num	alt	CDDS (%)
Brandimarte	10	2.59	17.02
Hurink Edata	43	1.15	15.81
Hurink Rdata	43	2	9.85
Hurink Vdata	43	4.31	1.11

num: number of instances; alt:machine's number per job

5. CONCLUSIONS AND FURTHER WORKS (1/2)

- Climbing Depth-bounded Discrepancy Search (CDDS= DDS+CDS)
- Heuristics
 - Job selection heuristics (EST-LDJ)
 - Heuristic for assignment of operations to machines (ECT)
- Backjumping heuristics
 - Permutation of two adjacent critical operations carried out by the same resource
 - Replacement of a critical operation on another resource
- Constraint propagation Forward Checking
- The test problems are Brandimarte and Hurink's benchmarks

5. CONCLUSIONS AND FURTHER WORKS (2/2)

- Our results are compared with the best known TS procedure and LBs of Mastrolilli and Gambardella (2000)
- CDDS gives promising results
- Designing a diversification mechanism
- Other problems:
 - Flexible job shop problem with multi-criteria