Title: Active diagnosis and reconfiguration for hybrid systems - Application: Autonomous Satellites.

Name: Mehdi Bayoudh

Ph.D. Supervisor: Louise Travé-Massuyès

Problematic:

The growth of embedded system technologies makes controlled dynamic systems (space engines, cars, aircrafts...) more complex. These systems, especially in satellites, combine both continuous (AOCS: Attitude and Orbit Control System, power equipment...) and discrete-event (fault events, control inputs, reconfiguration actions...) behaviors. This leads to hybrid dynamics. These systems are very expensive and they often perform critical tasks with very limited on-ground ability of intervention. Consequently, autonomy is very crucial. Autonomy calls for an on-line supervision and diagnosis, which guarantee the state tracking in all operating modes in order to perform reconfiguration actions after a fault occurrence.

Purposes and work framework:

This work aims to the development of a diagnosis and reconfiguration approach for autonomous satellites. This work is supported by Thalès Alenia Space.

Context and positioning:

In this Ph.D. a Model Based Diagnosis (MBD) approach is proposed as well as a hybrid model that aims to combine both continuous and discrete-event dynamics in a unique modeling framework as mentioned in [Henzinger, 1996] and inspired by the language theory from [Ramadge et al, 1989]. This model is then used by the on-line diagnoser, that takes as input the continuous control signals and discrete control inputs and produces a state estimation (faulty or nominal) that is generated on-line.

Our diagnosis approach couples both continuous system [Cocquempot et al, 2004] and discrete-event system [Sampath et al, 1995] techniques.

After a fault occurrence, a reconfiguration action can be performed in order to refine an ambiguous diagnosis (Active diagnosis) and take the system out of the fault mode (Reconfiguration).

In this Ph.D., we propose considering a reconfiguration approach guided by the diagnosability property of the system.

Diagnosability is the property of a system and its monitors to exhibit different observations for all anticipated faults. A hybrid system is diagnosable if every fault occurrence can be detected with a finite number of discrete observable events and with continuous measures provided by system sensors.

The diagnosability property was defined in the literature, in one hand for discrete event systems (DES) [Sampath et al, 1995], and in the other hand for continuous systems (CS) [Travé-Massuyès *et al*, 2004].

In this Ph.D. work new concepts of fault signature are proposed in order to define the diagnosability property for multimode and hybrid systems. Diagnosability criteria are stated and proved.

Work advancement

We are working now on the reconfiguration approach, which is guided by the diagnosability properties of the system, in order to add a reconfiguration module to the current diagnosis software. This work is inspired by the works of [Sampath, et al, 1997] on DES active diagnosis and [Tsuda et al, 2001] on hybrid systems reconfiguration.

Publications :

State Tracking in the Hybrid Space, Mehdi Bayoudh, Louise Travé-Massuyès and Xavier Olive. In proceeding of the 18th International Workshop on Principles of Diagnosis DX'07, Nashville, USA.

Hybrid systems diagnosability by abstracting faulty continuous dynamics, Mehdi Bayoudh, Louise Travé-Massuyès and Xavier Olive. In proceeding of the 17th International Workshop on Principles of Diagnosis DX'06, Peñaranda De Duero, Spain, June 2006.

References :

[Sampath, et al, 1997] M. Sampath, S. Lafortune, and D. Teneketsis. Active Diagnosis of Discrete-Event Systems. *Proceedings of the 36th IEEE Conference on Decision and Control*, vol. 3, pp. 2976-2983, San Diego, CA, USA 1997.

[Ramadge et al, 1989] P. J. Ramadge and W. M. Wonham. The control of discrete-Event Systems. *Proc. IEEE*, vol. 77, pp. 81-98, January 1989.

[Sampath et al, 1995] M. Sampath, R. Sengputa, S. Lafortune, K. Sinnamohideen and D. Teneketsis. Diagnosability of Discrete-Event Systems. *IEEE Transactions on Automatic Control*, vol. 40, pp. 1555-1575, 1995.

[Henzinger, 1996] T. Henzinger. The theory of hybrid automata. *In Proceedings of the 11th Annual IEEE Symposium on Logic in Computer Science (LICS'96)*, pages 278–292, New Brunswick, New Jersey, 1996.

[Travé-Massuyès et al, 2004] L. Travé-Massuyès, T. Escobet, S. Spanache, X. Olive. Diagnosability analysis based on component supported analytical redundancy relations. *IEEE Transactions on Systems, Man and Cybernetics, Part A (2004)*.

[Tsuda et al, 2001] K. Tduda, D. Mignone, G. Ferrari-Tescate, M. Morari. Reconfiguration Strategies for Hybrid Systems. *Proceedings of the American Control Conference*. Arlington, VA June 25-27, 2001.

[Cocquempot et al, 2004] V. Cocquempot, T. El Mezyani, and M. Staroswiecki. Fault detection and isolation for hybrid systems using structured parity residuals. *IEEE/IFAC-ASCC: Asian Control Conference*, 2004.