Building Foundations for
Dependable Distributed Systems

Rick Schlichting

Software Systems Research Department
AT&T Labs-Research

atat

{((

Work done in collaboration with:

- Matti Hiltunen (AT&T)

- Former Arizona PhD students Jun He (Cisco), Patrick
Bridges (U. New Mexico), and Mohan Rajagopalan (Intel).

- Arizona faculty member Saumya Debray.
- AT&T researcher Trevor Jim.

- UIUC PhD student Kaustubh Joshi (AT&T VURI intern) and
faculty member Bill Sanders.

S o~

Motivation

. Society is increasingly based on information systems and
networks.

Next Generation Information Infrastructure

Characteristics

- Large number of networked machines.

- Spectrum of network types and technologies: wired,
optical, wireless,

- Spectrum of distances: personal-area, local-area,
metro-area, wide-area,....

- Spectrum of devices: from sensors to mobile units to
high end machines and clusters.

- Spectrum of applications.
- Dynamic execution conditions and resource demands.
- Multiple administrative domains.

= MUST be dependable!

S o~

Dependability

Definition: The trustworthiness of a computing system such that

reliance can be justifiably placed on the service it delivers.
(Laprie, et al., Dependability: Basic Concepts and Terminology, Springer-Verlag, 1992)

Includes many properties and attributes
Reliability
Availability
Safety
Security
Timeliness

Non-functional or Quality of Service (QoS) attributes
Focus is not on what gets done, but rather how well.

Immensely challenging to build software with these attributes!
Failures, intrusions...
Concurrent and non- determlnlst|c execution
Heterogeneous systems and networks
Resource constraints
Multiple administrative domains
Scale

Dealing with multiple attributes makes it even harder.

= Fundamental issue is complexity.

System Abstractions

System abstractions can simplify the process.

Definition
- Simplified model of a real-life hardware/software component or function.

- Extracts essential features while omitting unnecessary detail.

Goal: Building blocks for constructing more complex
systems.

Have long been used to as a way to simplify the design
of complex systems.
“Classic” examples

- Process, file, virtual memory,....

- Layered operating system architectures (e.g., THE system).

= Good abstractions are those that people use without
thinking about the underlying implementation.

S o~

What about Dependability?

Certainly some good dependability-related
abstractions

Provide enhanced QoS characteristics.

Hardware virtualization
Stable storage: abstract storage that never fails.
Fail-stop processor: virtual processor whose only failure is a detectable crash.

Services for networked systems

Often focus on providing common global information across machines despite
machine and network failures (virtual shared state).

Implemented as middleware and/or using network protocols.
Consistent global clock: abstraction of a single system-wide clock.
Atomic multicast: shared message queue.

Distributed atomic actions (transactions): all or nothing execution across
machines.

Can also be organized as layers or hierarchies.

Application
Conversation Object/Action State Machine Primary/Bac<up | Software

{recoverability, {replica coordination}
E {primary election {update backups}
{checkpoint coordination ot

Atomic Actions

o f o Fault-Tolerance
{commit protocols) {commuynigation;
Support
recoverabilit ‘
y o RPC
Resilient Processes 7at most once
semantics}
replication}
G roCess jorn
{checkpointing @ oty {message dissemination
F Atomic Actions Memberghip = Mutticast
I o
flogging) annm updating} | {totai order
{clockless protocois)} {order}
{recoverability) {terminatiori

Stable Storage Time

Challenges and Issues

Abstraction failures (leaky abstractions)

Impossible to implement an abstraction in which QoS properties hold under all
conditions.

Inherently probabilistic.

Composing abstractions

Reasoning about properties of combinations of abstractions.
Conflicts and tradeoffs between different attributes.
Performance overhead.

Unnecessary attributes

Matching attributes of abstractions to application and execution environment.
Unnecessary attributes can mean extra execution overhead.

Mechanism-oriented design

Focus on mechanism rather than abstraction.
Protocols (e.g., SOAP), survivable systems (e.g., IDSs).

Changing QoS attributes dynamically

Providing ability to adapt at runtime

Ideas

Translucent abstractions
- Explicitly exposes useful information about internal operation.

- Would be useful, for e.g., for TCP operation over wireless links.

- Example: accrual failure detectors, which gives an estimate of
the probability that a host has failed rather than just a binary
indication.

Customizable and synthesized abstractions

- Allows the attributes and levels of assurance to be
customized based on application requirements and
execution environment.

Abstractions for survivability

- Instrusion-stop process, which stops executing and
issues a notification when compromised.

S o~

CHANGED USER
REQUIREMENTS 5 INTRUSIONS
Secure/

Survivable Available

Battery Reliable
Power — >

B
Predictable
Adaptable

Maintainable

CHANGES IN _ FAILURES
AVAILABLE Network Bandwidth
RESOURCES m

CHANGED USER
REQUIREMENTS 2 5 INTRUSIONS

Reliable Available
Secursr [Middieware]
Battery : CPU
Power Survivable Adaptable

[_Protocols |

Predictable

CHANGES IN _ FAILURES
AVAILABLE Network Bandwidth
RESOURCES

Maintainable

Dependable Systems Research at AT&T

Provide support for building system abstractions and
services that bridge the gap between network and
application.

Support for configurable solutions

- Ability to customize properties to the characteristics of the execution
environment and the needs of the application.

Support for adaptive behavior

- Ability to change execution behavior dynamically to react to changes in the
execution environment or the application.

Support for synthesized solutions

- Ability to synthesize abstractions that optimize system attributes such as
performance or dependability (holistic optimization).

Cactus = configuration
Cholla = adaptation

Cassyopia = synthesis a

Cactus: Building Highly Configurable

Software

Both a programming model and an implementation
framework for building customized software from
collections of software modules.

Highlights

- Fine-grain configuration and customization.

- Multiple types of attributes and properties, each implemented by a
collection of alternative modules.

- Combination of hierarchical and non-hierarchical composition.

Focus

- Communication-oriented services in networks, i.e., protocol stacks
and distributed services (but more general).

- Highly customizable Quality of Service (QoS) attributes related to
fault tolerance, timeliness, security, etc. (but useful for other
reasons).

Addresses challenge of module interaction in highly-

configurable software. ’

Messages/ Method invocations

QoS requests/Notifications

Customizable API

Shared data Micro-protocols Events

structures Msg from above

Reliability

essages
f\f Msg from below
Total order

Site failure

Hash tables etc.|i Integrity Msg timeout

Composite protocol

Event handlers

Customizable API
Messages/ Method invocations

QoS requests/Notifications

Page 15 The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights Reserved

Cactus Model

Protocol/service = composite protocol
- Provides service-specific API.

Property/QoS attribute = micro-protocol (MP)

- MPs interact using an events, shared data, and dynamic messages.
- Mechanisms provide decoupling of MPs = configurability.

Service customization = choose appropriate MPs

Dynamic adaptation = load/activate/deactivate MPs at
runtime

Two implementations of Cactus 3.0

- C version running on different variants of Unix.
- Java version.

S o~

Example Protocols and Services
Configurable Transport Protocol (CTP)

- Ordering, reliability, flow/congestion control, security.

Secure and Survivable Communication (SecComm)
- Privacy, authenticity, integrity, replay prevention, combinations.

Configurable Quality of Service (CQoS)

- Adding transparent multi-dimensional QoS customization to distributed
object systems.

Distributed System Monitoring Service (CDSMon)

— Function to be monitored.

Location-Based Services (LBS)
- Functionality based on location for mobile services.

Ad-Hoc Networking (AHN)
- Dynamic QoS

AT&T Enterprise Messaging Network (EMN)

- Per request QoS for mobile service platforms .

CQoS Architecture (3. He)

Client Application Server Application |

\

\
Cactus

CQoS consists of two components
- Application and platform-specific CQoS interceptor generated from IDL.

- Generic CQoS service component implements customizable QoS using Cactus.

Micro-protocols include
Fault tolerance: ActiveRep, PassiveRep, TotalOrder, MajorityVote, Membership,
StateRecovery... .
Security: DESPrivacy, Authentication, AccessControl ...

Timeliness: PrioritySched, QueueSched, TimedSched.

Semantically different combinations of micro-protocols provide
semantically different variations of multi-dimensional QoS.

Adaptive Systems

Each phase can be complex in
large networked systems

Monitor . Monitoring involves data across
multiple hosts and multiple
sources.

- * Analyzing may involve heuristics or

evaluation over time.

° Decision may involve evaluating
Adapt Analyze tradeoffs or distributed algorithms.

* Adaptation may involve distributed
coordination across multiple hosts.

Decide

Adaptation mechanisms versus policies

. Mechanisms provide hooks for monitoring and effecting changes as well as
protocols for data collection, analysis, and adaptation coordination.

. Policy encapsulates tradeoff analysis and “business logic”. E

Cholla Adaptation Architecture (p. Bridges)

Challenges
- Decoupling control from regular functionality.

- Coordinating adaptations

- Inter-component coordination on a single host
- Inter-host coordination for distributed services

- Composition of adaptation policies.
- Developing appropriate adaptation policies.
. Efficient realization of policies.

Solution: Cholla adaptation
architecture

- Uses Cactus as underlying platform for
implementing adaptive mechanisms and
protocols.

Software Architecture

Session

Protocol

Adaptation
Controller

Adaptation
Controller

Adaptation Controller

Implements execution feedback control loop:

Monitors system state and controls adaptation.

Monitoring:

Input variables from controlled components.
Input from external monitoring.

Control:

Generates outputs based on inputs plus adaptation policies.

Changes execution parameters in controlled components (value
adaptations).

Orchestrates module changeovers (algorithmic adaptations).

Implementations:

FLAC: Fuzzy logic based adaptation controller. Focuses on value
adaptations and inter-component coordination.

CAC: Cactus based adaptation controller. Focuses on algorithmic
adaptations and inter-host coordination.

Others possible....

I o~

Control and inter-component coordination

Meta
Cont_roller

Inter-host coordination

Agreement |,

<

Vid Sender
Controller

Trans Prot
Controller

Secure

Al

Fast

A

. Graceful
Adap prot

Policy Generation (K. Joshi, W. Sanders)

Goal: Use stochastic models of system and environment to
generate good policies for selecting adaptive actions.

Action Adaptation, Monitoring Actions

™ Selection #
_ Model
N Moﬂ System State pgasi’;'r‘;e Parameter
(Probabilistic) Y Restimation
System ?
e State <
Estimation Monitoring

Use Bayesian Techniques for State-Estimation

Multiple Algorithms for Action Selection (control)
Single-step (greedy): look at the effects of next action only to determine adaptation
Multi-step: treat problem as a sequential decision problem; choose adaptations by
looking for best sequences of adaptation actions

Applied to Automatic Distributed System Recovery

Cassyopia: Synthesizing Abstractions
(M. Rajagopalan, S. Debray)

Holistic system optimization: consider the
system as an integrated whole.

Goals:

- Increase the scope of optimization, e.g., across address spaces.

- A uniform approach that generalizes across metrics, e.g., performance and
dependability.

- Based on compiler optimization techniques and binary rewriting infrastructure.

Examples:

- Event-based systems [PLDI 2002]
- System call clustering [In submission]
- Authenticated system calls [DSN DCCS 2005]

=All can be viewed as synthesizing new
abstractions automatically using compiler
techniques.

S o~

System Call Clustering

System calls are ubiquitous but still expensive.

Profiling to identify system calls that can be executed in
a single kernel crossing » system call cluster:

Non linear sequences
Across function boundaries

Maximize size of cluster through compiler techniques:
Code motion

Function inlining
Loop unrolling

multi-call : new OS primitive that allows multiple
system calls in a single boundary crossing.

Experimental results:

mpeg_play 20% frame rate, 15% execution time

e -~

Authenticated System Calls
(M. Rajagopalan, T.Jim)

New implementation of a system call monitor.

Observation: Attacker often use system calls to inflict
real damage a a system.

Authenticated system call
New OS primitive that can monitor and enforce system call policies

Regular system calls with additional parameters
Policy : specifies expected system call behavior

MAC : cryptographically guarantees integrity of system
call and arguments

Executed only if the call conforms with the specified policy

Compiler techniques to generate policies and to
transform binaries to synthesize new calls.

S o~

System Call Monitoring

Application

@tenTCallilg/[onitor

-

native- _ sysctl: permit POLICY
native-break: permit
native-chdir: permit

Snippet from systrace /’ native-close: permit

~

native-execve: filename eq "/usr/bin/sudo" then deny
knative—execve: filename match "/bin/*" then permit /

policy for /bin/ksh
(www.hairyeyeball.org)

Comparing Implementation Strategies

Policy
Generation

Runtime
Checking

In-kernel

Hybrid

ASC

Manual /
Training based

Protected
Program

Training based

——— ——

Policies

|
|
|
\

System call |4
handlers

User-spacel ________w |
i System Call Entry i<~ - Kernel L _S_}:s_tﬁr_n_ 9_3111_]::{1@7_ .
Policy ’
¥ Verificati System call | o
| handlers

Compiler baseq

e

System call
handlers

Mapping policy to program
Increased kernel complexity

Mapping policy to program
Performance
Race conditions (TOCTOU Attacks)

Generating Policies

Trusted Installer based on PLTO binary rewriting system.

~

Steps /
_ Policy Key
- Disassembly, IR —— //

Policy generation

Policy Policy

. |
N
N
N
AN
/
/
/
/
/
/

Create ASC | N
) Generator Installer
Replace syscall with ASC
Reassemble, rewrite _ Trusted Installer -
Advantages

- Completely automatic, < 30sec for programs in Spec2000 suite
- Does not miss rarely used calls

S o~

System Call Policies

Policy: Set of verifiable properties of the system call
request.

Basic policy contains
- System call number

- System call site
- Some argument values

For example _ _
Permit open from location 0x806c462

Parameter 0 equals “/dev/console”

open(“/dev/console”,0x5) —»
Parameter 1 equals 5

Control flow policy
- Constrain sequence of system calls in a program.

S o~

ASCs and Policy Enforcement

An ASC is a regular system calls with additional

parameters
Policy : bit string encoding expected system call behavior
MAC : cryptographically guarantees integrity of system call

and arguments

open(“/dev/console”,0x5) —> open(“/dev/console”,0x5,policy,MAC)

Policy enforcement
- When a system call occurs:

- Create new encoded policy (EP’) based on policy argument.
- Compute the MAC’ of EP’.

« Allow call only if MAC'’ is the same as MAC passed as argument.
- Any tampering with the system call will cause MACs to differ.

S o~

Conclusions and Future Work

Useful system abstractions are the key to building a highly
dependable information infrastructure.

Our research is addressing issues related to building such
abstractions

Cactus: Flexible configuration based on two-level composition model.
Cholla: Control and coordinated adaptation.
Cassyopia: Compiler techniques for synthesizing new mechanisms.

Future work
Using Cactus and protocols/services built using Cactus.
Continue synthesis work.
Applications, applications, applications!
Policies, policies, policies!

S o~

For More Information

Bhatti, Hiltunen, Schlichting, and Chiu. Coyote: A System for Constructing Fine-Grain
Configurable Communication Services. ACM Trans. on Computer Systems 16, 4
(Nov. 1998), 321-366.

Chen, Hiltunen, and Schlichting, Constructing Adaptive Software in Distributed
Systems. Proc. 21st Conf. on Distributed Computing Systems, (April 2001), 635-
643.

Hiltunen, Schlichting, and Ugarte. Building Survivable Services using Redundancy
and Adaptation, IEEE Trans. on Computers (February 2003), 181-194.

He, Hiltunen, Rajagopalan, and Schlichting. Providing QoS Customization in
Distributed Object Systems, Software-Practice and Experience 33,4 (April 2003),
295-320.

Joshi, Hiltunen, Schlichting, Sanders, and Agbaria. Online Model-Based Adaptation for
Optimizing Performance and Dependability. Proc. ACM SIGSOFT Workshop on Self-
Managed Systems (Oct. 2004).

Rajagopalan, Hiltunen, Jim, Schlichting. Authenticated System Calls. Proc. DSN-2005
Dependable Computing and Communication Symp. (June 2005), 358-367.

Hiltunen, Schlichting. The Lost Art of Abstraction. In Architecting Dependable
Systems III, (R. de Lemos, C. Gacek, A. Romanovsky, ed.), Lecture Notes in
Computer Science, Volume 3549, Springer-Verlag, Berlin, 2005, pp. 331-342.

Joshi, Hiltunen, Sanders, and Schlichting. Automatic Model-Driven Recovery in
Distributed Systems. Proc. 24th Symp. On Reliable Distributed Systems (Oct.
2005), 25-38.

Thank you!

