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Motivation

• Society is increasingly based on information systems and
networks.

Our SocietyOur Society

Social Infrastructure Information SystemSocial Infrastructure Information System



The Lost Art of Abstraction   © Copyright 2006 AT&T. All Rights ReservedPage 4

Next Generation Information Infrastructure

Characteristics

– Large number of networked machines.

– Spectrum of network types and technologies: wired,
optical, wireless, ….

– Spectrum of distances: personal-area, local-area,
metro-area, wide-area,….

– Spectrum of devices: from sensors to mobile units to
high end machines and clusters.

– Spectrum of applications.

– Dynamic execution conditions and resource demands.

– Multiple administrative domains.

! MUST be dependable!
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Dependability
Definition: The trustworthiness of a computing system such that

reliance can be justifiably placed on the service it delivers.
(Laprie, et al., Dependability: Basic Concepts and Terminology, Springer-Verlag, 1992)

Includes many properties and attributes
• Reliability

• Availability

• Safety

• Security

• Timeliness

Non-functional or Quality of Service (QoS) attributes
• Focus is not on what gets done, but rather how well.

Immensely challenging to build software with these attributes!
• Failures, intrusions….

• Concurrent and non-deterministic execution

• Heterogeneous systems and networks

• Resource constraints

• Multiple administrative domains

• Scale

Dealing with multiple attributes makes it even harder.

! Fundamental issue is complexity.
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System Abstractions

System abstractions can simplify the process.

Definition

– Simplified model of a real-life hardware/software component or function.

– Extracts essential features while omitting unnecessary detail.

Goal: Building blocks for constructing more complex
systems.

Have long been used to as a way to simplify the design
of complex systems.

“Classic” examples

– Process, file, virtual memory,….

– Layered operating system architectures (e.g., THE system).

!Good abstractions are those that people use without
thinking about the underlying implementation.
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What about Dependability?

Certainly some good dependability-related
abstractions

• Provide enhanced QoS characteristics.

Hardware virtualization

• Stable storage: abstract storage that never fails.

• Fail-stop processor: virtual processor whose only failure is a detectable crash.

Services for networked systems

• Often focus on providing common global information across machines despite
machine and network failures (virtual shared state).

• Implemented as middleware and/or using network protocols.

• Consistent global clock: abstraction of a single system-wide clock.

• Atomic multicast: shared message queue.

• Distributed atomic actions (transactions): all or nothing execution across
machines.

Can also be organized as layers or hierarchies.
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Challenges and Issues

Abstraction failures (leaky abstractions)
• Impossible to implement an abstraction in which QoS properties hold under all

conditions.

• Inherently probabilistic.

Composing abstractions
• Reasoning about properties of combinations of abstractions.

• Conflicts and tradeoffs between different attributes.

• Performance overhead.

Unnecessary attributes
• Matching attributes of abstractions to application and execution environment.

• Unnecessary attributes can mean extra execution overhead.

Mechanism-oriented design
• Focus on mechanism rather than abstraction.

• Protocols (e.g., SOAP), survivable systems (e.g., IDSs).

Changing QoS attributes dynamically
• Providing ability to adapt at runtime
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Ideas

Translucent abstractions
– Explicitly exposes useful information about internal operation.

– Would be useful, for e.g., for TCP operation over wireless links.

– Example: accrual failure detectors, which gives an estimate of
the probability that a host has failed rather than just a binary
indication.

Customizable and synthesized abstractions

– Allows the attributes and levels of assurance to be
customized based on application requirements and
execution environment.

Abstractions for survivability

– Instrusion-stop process, which stops executing and
issues a notification when compromised.
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Dependable Systems Research at AT&T

Provide support for building system abstractions and
services that bridge the gap between network and
application.

Support for configurable solutions

– Ability to customize properties to the characteristics of the execution
environment and the needs of the application.

Support for adaptive behavior
– Ability to change execution behavior dynamically to react to changes in the

execution environment or the application.

Support for synthesized solutions
– Ability to synthesize abstractions that optimize system attributes such as

performance or dependability (holistic optimization).

Cactus " configuration

Cholla " adaptation

Cassyopia " synthesis
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Cactus: Building Highly Configurable

Software
Both a programming model and an implementation

framework for building customized software from
collections of software modules.

Highlights

– Fine-grain configuration and customization.

– Multiple types of attributes and properties, each implemented by a
collection of alternative modules.

– Combination of hierarchical and non-hierarchical composition.

Focus
– Communication-oriented services in networks, i.e., protocol stacks

and distributed services (but more general).

– Highly customizable Quality of Service (QoS) attributes related to
fault tolerance, timeliness, security, etc. (but useful for other
reasons).

Addresses challenge of module interaction in highly-
configurable software.
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Cactus Model

Protocol/service = composite protocol
– Provides service-specific API.

Property/QoS attribute = micro-protocol (MP)

– MPs interact using an events, shared data, and dynamic messages.

– Mechanisms provide decoupling of MPs ! configurability.

Service customization = choose appropriate MPs

Dynamic adaptation = load/activate/deactivate MPs at
runtime

Two implementations of Cactus 3.0
– C version running on different variants of Unix.

– Java version.
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Example Protocols and Services

Configurable Transport Protocol (CTP)
– Ordering, reliability, flow/congestion control, security.

Secure and Survivable Communication (SecComm)
– Privacy, authenticity, integrity, replay prevention, combinations.

Configurable Quality of Service (CQoS)

– Adding transparent multi-dimensional QoS customization to distributed
object systems.

Distributed System Monitoring Service (CDSMon)
– Function to be monitored.

Location-Based Services (LBS)
– Functionality based on location for mobile services.

Ad-Hoc Networking (AHN)
– Dynamic QoS

AT&T Enterprise Messaging Network (EMN)

– Per request QoS for mobile service platforms
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CQoS Architecture (J. He)

CQoS consists of two components
– Application and platform-specific CQoS interceptor generated from IDL.

– Generic CQoS service component implements customizable QoS using Cactus.

Micro-protocols include

• Fault tolerance: ActiveRep, PassiveRep, TotalOrder, MajorityVote, Membership,
StateRecovery… .

• Security: DESPrivacy, Authentication, AccessControl …

• Timeliness: PrioritySched, QueueSched, TimedSched.

Semantically different combinations of micro-protocols provide
semantically different variations of multi-dimensional QoS.

Middleware

Client Application

CQoS

Server Application

CQoS CQoS

Service

CQoS

Interceptor

CQoS

Cactus
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Monitor

Adaptation mechanisms versus policies

• Mechanisms provide hooks for monitoring and effecting changes as well as

protocols for data collection, analysis, and adaptation coordination.

• Policy encapsulates tradeoff analysis and “business logic”.

Each phase can be complex in
large networked systems

! Monitoring involves data across
multiple hosts and multiple
sources.

Analyze

! Analyzing may involve heuristics or
evaluation over time.

Decide

! Decision may involve evaluating
tradeoffs or distributed algorithms.

Adapt

! Adaptation may involve distributed
coordination across multiple hosts.

All must be done in a
running system and an

environment that continues
to change.

Adaptive Systems
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Cholla Adaptation Architecture (P. Bridges)

Challenges

• Decoupling control from regular functionality.

• Coordinating adaptations

– Inter-component coordination on a single host

– Inter-host coordination for distributed services

• Composition of adaptation policies.

• Developing appropriate adaptation policies.

• Efficient realization of policies.

Solution: Cholla adaptation
architecture

• Uses Cactus as underlying platform for
implementing adaptive mechanisms and
protocols.



The Lost Art of Abstraction   © Copyright 2006 AT&T. All Rights ReservedPage 21

Software Architecture

Operating System
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Controller
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Controller
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Adaptation Controller

Implements execution feedback control loop:

• Monitors system state and controls adaptation.

Monitoring:

• Input variables from controlled components.

• Input from external monitoring.

Control:

• Generates outputs based on inputs plus adaptation policies.

• Changes execution parameters in controlled components (value
adaptations).

• Orchestrates module changeovers (algorithmic adaptations).

Implementations:

• FLAC: Fuzzy logic based adaptation controller.  Focuses on value
adaptations and inter-component coordination.

• CAC: Cactus based adaptation controller. Focuses on algorithmic
adaptations and inter-host coordination.

• Others possible….
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Goal: Use stochastic models of system and environment to
generate good policies for selecting adaptive actions.

Use Bayesian Techniques for State-Estimation

Multiple Algorithms for Action Selection (control)

• Single-step (greedy): look at the effects of next action only to determine adaptation

• Multi-step: treat problem as a sequential decision problem; choose adaptations by
looking for best sequences of adaptation actions

Applied to Automatic Distributed System Recovery

Policy Generation (K. Joshi, W. Sanders)
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Cassyopia: Synthesizing Abstractions
   (M. Rajagopalan, S. Debray)

Holistic system optimization: consider the
system as an integrated whole.

Goals:
– Increase the scope of optimization, e.g., across address spaces.

– A uniform approach that generalizes across metrics, e.g., performance and
dependability.

– Based on compiler optimization techniques and binary rewriting infrastructure.

Examples:
– Event-based systems [PLDI 2002]

– System call clustering [In submission]

– Authenticated system calls [DSN DCCS 2005]

!All can be viewed as synthesizing new
abstractions automatically using compiler
techniques.
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System Call Clustering

System calls are ubiquitous but still expensive.

Profiling to identify system calls that can be executed in
a single kernel crossing ! system call cluster:

• Non linear sequences

• Across function boundaries

Maximize size of cluster through compiler techniques:

• Code motion

• Function inlining

• Loop unrolling

multi-callmulti-call : new OS primitive that allows multiple
system calls in a single boundary crossing.

Experimental results:

• mpeg_play 20% frame rate, 15% execution time
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Authenticated System Calls
    (M. Rajagopalan, T.Jim)

New implementation of a system call monitor.

Observation: Attacker often use system calls to inflict
real damage a a system.

Authenticated system call
• New OS primitive that can monitor and enforce system call policies

• Regular system calls with additional parameters

PolicyPolicy :  specifies expected system call behavior

MACMAC  :  cryptographically guarantees integrity of system 
call and arguments

• Executed only if the call conforms with the specified policy

Compiler techniques to generate policies and to
transform binaries to synthesize new calls.
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System Call Monitoring

native-__sysctl: permit POLICY

native-break: permit

native-chdir: permit

native-close: permit

native-execve: filename eq "/usr/bin/sudo" then deny

native-execve: filename match "/bin/*" then permit

Snippet from systrace 

policy for /bin/ksh

(www.hairyeyeball.org)

Application

Kernel

System Call Monitor

x

Policy
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Comparing Implementation Strategies
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Generating Policies

Trusted Installer based on PLTO binary rewriting system.

Steps

• Disassembly, IR

• Policy generation

• Create ASC

• Replace syscall with ASC

• Reassemble, rewrite

Advantages

• Completely automatic,  < 30sec for programs in Spec2000 suite

• Does not miss rarely used calls

Policy

Generator

Policy

Policy

Installer

Key

Trusted Installer
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System Call Policies

Policy: Set of verifiable properties of the system call
request.

Basic policy contains
– System call number

– System call site

– Some argument values

Control flow policy

– Constrain sequence of system calls in a program.
 

For example

open(“/dev/console”,0x5)

Permit open from location 0x806c462

Parameter 0 equals “/dev/console”

Parameter 1 equals 5
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ASCs and Policy Enforcement

An ASC is a regular system calls with additional
parameters

Policy :  bit string encoding expected system call behavior

MAC  :  cryptographically guarantees integrity of system call 
   and arguments

open(“/dev/console”,0x5)                     open(“/dev/console”,0x5,policy,MAC)

Policy enforcement
• When a system call occurs:

– Create new encoded policy (EP!) based on policy argument.

• Compute the MAC! of EP!.

• Allow call only if MAC! is the same as MAC passed as argument.

• Any tampering with the system call will cause MACs to differ.
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Conclusions and Future Work

Useful system abstractions are the key to building a highly
dependable information infrastructure.

Our research is addressing issues related to building such
abstractions

• Cactus: Flexible configuration based on two-level composition model.

• Cholla: Control and coordinated adaptation.

• Cassyopia: Compiler techniques for synthesizing new mechanisms.

Future work

• Using Cactus and protocols/services built using Cactus.

• Continue synthesis work.

• Applications, applications, applications!

• Policies, policies, policies!
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