
The Lost Art of Abstraction

Rick Schlichting
Software Systems Research Department
AT&T Labs-Research

Building Foundations for
Dependable Distributed Systems

The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights ReservedPage 2

Work done in collaboration with:

• Matti Hiltunen (AT&T)

• Former Arizona PhD students Jun He (Cisco), Patrick
Bridges (U. New Mexico), and Mohan Rajagopalan (Intel).

• Arizona faculty member Saumya Debray.

• AT&T researcher Trevor Jim.

• UIUC PhD student Kaustubh Joshi (AT&T VURI intern) and
faculty member Bill Sanders.

The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights ReservedPage 3

Motivation

• Society is increasingly based on information systems and
networks.

Our SocietyOur Society

Social Infrastructure Information SystemSocial Infrastructure Information System

The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights ReservedPage 4

Next Generation Information Infrastructure

Characteristics

– Large number of networked machines.

– Spectrum of network types and technologies: wired,
optical, wireless, ….

– Spectrum of distances: personal-area, local-area,
metro-area, wide-area,….

– Spectrum of devices: from sensors to mobile units to
high end machines and clusters.

– Spectrum of applications.

– Dynamic execution conditions and resource demands.

– Multiple administrative domains.

! MUST be dependable!

The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights ReservedPage 5

Dependability
Definition: The trustworthiness of a computing system such that

reliance can be justifiably placed on the service it delivers.
(Laprie, et al., Dependability: Basic Concepts and Terminology, Springer-Verlag, 1992)

Includes many properties and attributes
• Reliability

• Availability

• Safety

• Security

• Timeliness

Non-functional or Quality of Service (QoS) attributes
• Focus is not on what gets done, but rather how well.

Immensely challenging to build software with these attributes!
• Failures, intrusions….

• Concurrent and non-deterministic execution

• Heterogeneous systems and networks

• Resource constraints

• Multiple administrative domains

• Scale

Dealing with multiple attributes makes it even harder.

! Fundamental issue is complexity.

The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights ReservedPage 6

System Abstractions

System abstractions can simplify the process.

Definition

– Simplified model of a real-life hardware/software component or function.

– Extracts essential features while omitting unnecessary detail.

Goal: Building blocks for constructing more complex
systems.

Have long been used to as a way to simplify the design
of complex systems.

“Classic” examples

– Process, file, virtual memory,….

– Layered operating system architectures (e.g., THE system).

!Good abstractions are those that people use without
thinking about the underlying implementation.

The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights ReservedPage 7

What about Dependability?

Certainly some good dependability-related
abstractions

• Provide enhanced QoS characteristics.

Hardware virtualization

• Stable storage: abstract storage that never fails.

• Fail-stop processor: virtual processor whose only failure is a detectable crash.

Services for networked systems

• Often focus on providing common global information across machines despite
machine and network failures (virtual shared state).

• Implemented as middleware and/or using network protocols.

• Consistent global clock: abstraction of a single system-wide clock.

• Atomic multicast: shared message queue.

• Distributed atomic actions (transactions): all or nothing execution across
machines.

Can also be organized as layers or hierarchies.

The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights ReservedPage 8

The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights ReservedPage 9

Challenges and Issues

Abstraction failures (leaky abstractions)
• Impossible to implement an abstraction in which QoS properties hold under all

conditions.

• Inherently probabilistic.

Composing abstractions
• Reasoning about properties of combinations of abstractions.

• Conflicts and tradeoffs between different attributes.

• Performance overhead.

Unnecessary attributes
• Matching attributes of abstractions to application and execution environment.

• Unnecessary attributes can mean extra execution overhead.

Mechanism-oriented design
• Focus on mechanism rather than abstraction.

• Protocols (e.g., SOAP), survivable systems (e.g., IDSs).

Changing QoS attributes dynamically
• Providing ability to adapt at runtime

The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights ReservedPage 10

Ideas

Translucent abstractions
– Explicitly exposes useful information about internal operation.

– Would be useful, for e.g., for TCP operation over wireless links.

– Example: accrual failure detectors, which gives an estimate of
the probability that a host has failed rather than just a binary
indication.

Customizable and synthesized abstractions

– Allows the attributes and levels of assurance to be
customized based on application requirements and
execution environment.

Abstractions for survivability

– Instrusion-stop process, which stops executing and
issues a notification when compromised.

The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights ReservedPage 11

Reliable

Available

Predictable

Secure/

Survivable

Maintainable

Adaptable

FAILURESCHANGES IN

AVAILABLE

RESOURCES

CPU

Network Bandwidth

INTRUSIONS
CHANGED USER

REQUIREMENTS

Battery

Power

The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights ReservedPage 12

Protocols

Middleware

Reliable Available

Predictable

Secure/

Survivable

Maintainable

Adaptable

CHANGED USER

REQUIREMENTS INTRUSIONS

FAILURESCHANGES IN

AVAILABLE

RESOURCES

CPUBattery

Power

APPLICATION

OS

Network Bandwidth

The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights ReservedPage 13

Dependable Systems Research at AT&T

Provide support for building system abstractions and
services that bridge the gap between network and
application.

Support for configurable solutions

– Ability to customize properties to the characteristics of the execution
environment and the needs of the application.

Support for adaptive behavior
– Ability to change execution behavior dynamically to react to changes in the

execution environment or the application.

Support for synthesized solutions
– Ability to synthesize abstractions that optimize system attributes such as

performance or dependability (holistic optimization).

Cactus " configuration

Cholla " adaptation

Cassyopia " synthesis

The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights ReservedPage 14

Cactus: Building Highly Configurable

Software
Both a programming model and an implementation

framework for building customized software from
collections of software modules.

Highlights

– Fine-grain configuration and customization.

– Multiple types of attributes and properties, each implemented by a
collection of alternative modules.

– Combination of hierarchical and non-hierarchical composition.

Focus
– Communication-oriented services in networks, i.e., protocol stacks

and distributed services (but more general).

– Highly customizable Quality of Service (QoS) attributes related to
fault tolerance, timeliness, security, etc. (but useful for other
reasons).

Addresses challenge of module interaction in highly-
configurable software.

The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights ReservedPage 15

Customizable API

C
o

m
p

o
s
it

e
 p

ro
to

c
o

l

Customizable API

EventsShared data
structures

Messages
Reliability

Total order

Integrity

Msg from below

Site failure

Msg timeout

Msg from above

Hash tables etc.

Composite/Traditional Protocol

Messages/ Method invocations QoS requests/Notifications

Composite/Traditional Protocol

Event handlers

Messages/ Method invocations QoS requests/Notifications

Micro-protocols

The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights ReservedPage 16

Cactus Model

Protocol/service = composite protocol
– Provides service-specific API.

Property/QoS attribute = micro-protocol (MP)

– MPs interact using an events, shared data, and dynamic messages.

– Mechanisms provide decoupling of MPs ! configurability.

Service customization = choose appropriate MPs

Dynamic adaptation = load/activate/deactivate MPs at
runtime

Two implementations of Cactus 3.0
– C version running on different variants of Unix.

– Java version.

The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights ReservedPage 17

Example Protocols and Services

Configurable Transport Protocol (CTP)
– Ordering, reliability, flow/congestion control, security.

Secure and Survivable Communication (SecComm)
– Privacy, authenticity, integrity, replay prevention, combinations.

Configurable Quality of Service (CQoS)

– Adding transparent multi-dimensional QoS customization to distributed
object systems.

Distributed System Monitoring Service (CDSMon)
– Function to be monitored.

Location-Based Services (LBS)
– Functionality based on location for mobile services.

Ad-Hoc Networking (AHN)
– Dynamic QoS

AT&T Enterprise Messaging Network (EMN)

– Per request QoS for mobile service platforms

The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights ReservedPage 18

CQoS Architecture (J. He)

CQoS consists of two components
– Application and platform-specific CQoS interceptor generated from IDL.

– Generic CQoS service component implements customizable QoS using Cactus.

Micro-protocols include

• Fault tolerance: ActiveRep, PassiveRep, TotalOrder, MajorityVote, Membership,
StateRecovery… .

• Security: DESPrivacy, Authentication, AccessControl …

• Timeliness: PrioritySched, QueueSched, TimedSched.

Semantically different combinations of micro-protocols provide
semantically different variations of multi-dimensional QoS.

Middleware

Client Application

CQoS

Server Application

CQoS CQoS

Service

CQoS

Interceptor

CQoS

Cactus

The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights ReservedPage 19

Monitor

Adaptation mechanisms versus policies

• Mechanisms provide hooks for monitoring and effecting changes as well as

protocols for data collection, analysis, and adaptation coordination.

• Policy encapsulates tradeoff analysis and “business logic”.

Each phase can be complex in
large networked systems

! Monitoring involves data across
multiple hosts and multiple
sources.

Analyze

! Analyzing may involve heuristics or
evaluation over time.

Decide

! Decision may involve evaluating
tradeoffs or distributed algorithms.

Adapt

! Adaptation may involve distributed
coordination across multiple hosts.

All must be done in a
running system and an

environment that continues
to change.

Adaptive Systems

The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights ReservedPage 20

Cholla Adaptation Architecture (P. Bridges)

Challenges

• Decoupling control from regular functionality.

• Coordinating adaptations

– Inter-component coordination on a single host

– Inter-host coordination for distributed services

• Composition of adaptation policies.

• Developing appropriate adaptation policies.

• Efficient realization of policies.

Solution: Cholla adaptation
architecture

• Uses Cactus as underlying platform for
implementing adaptive mechanisms and
protocols.

The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights ReservedPage 21

Software Architecture

Operating System

Protocol

Adaptation

Controller

Adaptation

Controller

Session

The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights ReservedPage 22

Adaptation Controller

Implements execution feedback control loop:

• Monitors system state and controls adaptation.

Monitoring:

• Input variables from controlled components.

• Input from external monitoring.

Control:

• Generates outputs based on inputs plus adaptation policies.

• Changes execution parameters in controlled components (value
adaptations).

• Orchestrates module changeovers (algorithmic adaptations).

Implementations:

• FLAC: Fuzzy logic based adaptation controller. Focuses on value
adaptations and inter-component coordination.

• CAC: Cactus based adaptation controller. Focuses on algorithmic
adaptations and inter-host coordination.

• Others possible….

The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights ReservedPage 23

IP

Transport

Protocol

Video

Sender

Adaptation Controller

Vid Sender

Controller

Trans Prot

Controller

Meta

Controller

Secure

Adap. mpFast

Adap. mp
Graceful

Adap prot

Agreement

Control and inter-component coordination

Inter-host coordination

The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights ReservedPage 24

Goal: Use stochastic models of system and environment to
generate good policies for selecting adaptive actions.

Use Bayesian Techniques for State-Estimation

Multiple Algorithms for Action Selection (control)

• Single-step (greedy): look at the effects of next action only to determine adaptation

• Multi-step: treat problem as a sequential decision problem; choose adaptations by
looking for best sequences of adaptation actions

Applied to Automatic Distributed System Recovery

Policy Generation (K. Joshi, W. Sanders)

Action

Selection

Adaptive

System
Model

System

State
Estimation

Model

Parameter
Restimation

Monitoring

System State

(Probabilistic)

Adaptation, Monitoring Actions

The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights ReservedPage 25

Cassyopia: Synthesizing Abstractions
 (M. Rajagopalan, S. Debray)

Holistic system optimization: consider the
system as an integrated whole.

Goals:
– Increase the scope of optimization, e.g., across address spaces.

– A uniform approach that generalizes across metrics, e.g., performance and
dependability.

– Based on compiler optimization techniques and binary rewriting infrastructure.

Examples:
– Event-based systems [PLDI 2002]

– System call clustering [In submission]

– Authenticated system calls [DSN DCCS 2005]

!All can be viewed as synthesizing new
abstractions automatically using compiler
techniques.

The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights ReservedPage 26

System Call Clustering

System calls are ubiquitous but still expensive.

Profiling to identify system calls that can be executed in
a single kernel crossing ! system call cluster:

• Non linear sequences

• Across function boundaries

Maximize size of cluster through compiler techniques:

• Code motion

• Function inlining

• Loop unrolling

multi-callmulti-call : new OS primitive that allows multiple
system calls in a single boundary crossing.

Experimental results:

• mpeg_play 20% frame rate, 15% execution time

The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights ReservedPage 27

Authenticated System Calls
 (M. Rajagopalan, T.Jim)

New implementation of a system call monitor.

Observation: Attacker often use system calls to inflict
real damage a a system.

Authenticated system call
• New OS primitive that can monitor and enforce system call policies

• Regular system calls with additional parameters

PolicyPolicy : specifies expected system call behavior

MACMAC : cryptographically guarantees integrity of system
call and arguments

• Executed only if the call conforms with the specified policy

Compiler techniques to generate policies and to
transform binaries to synthesize new calls.

The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights ReservedPage 28

System Call Monitoring

native-__sysctl: permit POLICY

native-break: permit

native-chdir: permit

native-close: permit

native-execve: filename eq "/usr/bin/sudo" then deny

native-execve: filename match "/bin/*" then permit

Snippet from systrace

policy for /bin/ksh

(www.hairyeyeball.org)

Application

Kernel

System Call Monitor

x

Policy

The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights ReservedPage 29

Comparing Implementation Strategies

In-kernel Hybrid ASC

Policy Manual / Training based Compiler based

Generation Training based

Runtime

Checking

 Mapping policy to program Mapping policy to program

 Increased kernel complexity Performance

 Race conditions (TOCTOU Attacks)

 User-space

Protected

Program

System Call Entry

Policy

Verification
System call

handlers

 Kernel

Protected

Program

System Call Entry MAC

Verif.

System call

handlers

Policies

Policy

Verification

Policies

Protected

Program

System Call Entry

System call

handlers

Verification

The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights ReservedPage 30

Generating Policies

Trusted Installer based on PLTO binary rewriting system.

Steps

• Disassembly, IR

• Policy generation

• Create ASC

• Replace syscall with ASC

• Reassemble, rewrite

Advantages

• Completely automatic, < 30sec for programs in Spec2000 suite

• Does not miss rarely used calls

Policy

Generator

Policy

Policy

Installer

Key

Trusted Installer

The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights ReservedPage 31

System Call Policies

Policy: Set of verifiable properties of the system call
request.

Basic policy contains
– System call number

– System call site

– Some argument values

Control flow policy

– Constrain sequence of system calls in a program.

For example

open(“/dev/console”,0x5)

Permit open from location 0x806c462

Parameter 0 equals “/dev/console”

Parameter 1 equals 5

The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights ReservedPage 32

ASCs and Policy Enforcement

An ASC is a regular system calls with additional
parameters

Policy : bit string encoding expected system call behavior

MAC : cryptographically guarantees integrity of system call
 and arguments

open(“/dev/console”,0x5) open(“/dev/console”,0x5,policy,MAC)

Policy enforcement
• When a system call occurs:

– Create new encoded policy (EP!) based on policy argument.

• Compute the MAC! of EP!.

• Allow call only if MAC! is the same as MAC passed as argument.

• Any tampering with the system call will cause MACs to differ.

The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights ReservedPage 33

Conclusions and Future Work

Useful system abstractions are the key to building a highly
dependable information infrastructure.

Our research is addressing issues related to building such
abstractions

• Cactus: Flexible configuration based on two-level composition model.

• Cholla: Control and coordinated adaptation.

• Cassyopia: Compiler techniques for synthesizing new mechanisms.

Future work

• Using Cactus and protocols/services built using Cactus.

• Continue synthesis work.

• Applications, applications, applications!

• Policies, policies, policies!

The Lost Art of Abstraction © Copyright 2006 AT&T. All Rights ReservedPage 34

For More Information
Bhatti, Hiltunen, Schlichting, and Chiu. Coyote: A System for Constructing Fine-Grain

Configurable Communication Services. ACM Trans. on Computer Systems 16, 4
(Nov. 1998), 321-366.

Chen, Hiltunen, and Schlichting, Constructing Adaptive Software in Distributed
Systems. Proc. 21st Conf. on Distributed Computing Systems, (April 2001), 635-
643.

Hiltunen, Schlichting, and Ugarte. Building Survivable Services using Redundancy
and Adaptation, IEEE Trans. on Computers (February 2003), 181-194.

He, Hiltunen, Rajagopalan, and Schlichting. Providing QoS Customization in
Distributed Object Systems, Software-Practice and Experience 33,4 (April 2003),
295-320.

Joshi, Hiltunen, Schlichting, Sanders, and Agbaria. Online Model-Based Adaptation for
Optimizing Performance and Dependability. Proc. ACM SIGSOFT Workshop on Self-
Managed Systems (Oct. 2004).

Rajagopalan, Hiltunen, Jim, Schlichting. Authenticated System Calls. Proc. DSN-2005
Dependable Computing and Communication Symp. (June 2005), 358-367.

Hiltunen, Schlichting. The Lost Art of Abstraction. In Architecting Dependable
Systems III, (R. de Lemos, C. Gacek, A. Romanovsky, ed.), Lecture Notes in
Computer Science, Volume 3549, Springer-Verlag, Berlin, 2005, pp. 331-342.

Joshi, Hiltunen, Sanders, and Schlichting. Automatic Model-Driven Recovery in
Distributed Systems. Proc. 24th Symp. On Reliable Distributed Systems (Oct.
2005), 25-38.

Thank you!

