A decision support system for vehicle routing based on model inversion and data analysis

B. GACIAS1, P. LOPEZ1, J. CEGARRA2

1LAAS-CNRS; Université de Toulouse, France
2CLLE; Université de Toulouse, France
{bgacias,lopez}@laas.fr, julien.cegarra@univ-jfc.fr

MOSIM 2010
Plan

1. Introduction
2. Proposed DSS
3. Model Inversion
4. Computational Results
5. Conclusions and further work
Plan

1. Introduction
2. Proposed DSS
3. Model Inversion
4. Computational Results
5. Conclusions and further work
Agressive competition \rightarrow reactivity to customer demands (costs minimization, quality of service)

Vehicle Routing Problems (VRPs) optimization

VRP: Determine the routes to be performed by a fleet of vehicles to serve a given set of customers
Problem statement

- Take into account the real-world routing environment constraints: capacity, time windows, ...

OR: methods to efficiently solve the variants of VRPs [Toth and Vigo, 2002]

Important limitations:
- human factors are not much considered in the modelling and in the solving phase of the problem
- models and solving systems are not ready to deal with the rapid changing situations
- lack of a decision support tool when the problem is not satisfiable

We propose an interdisciplinary approach for the DSS [Gacias et al., 2009]
Plan

1. Introduction

2. Proposed DSS

3. Model Inversion

4. Computational Results

5. Conclusions and further work
Decision Support System (DSS)

- Two different components:
 - Solving Mechanism based on Operational Research techniques
 - Human Interface based on Work Domain Analysis and where the human aspects are considered

- 3 independent phases:
 - Vehicle selection
 - Customer allocation
 - Route creation
Solving mechanism

- VRP algorithms for customer allocation and route creation
- 3 control modes → Automatisation
Plan

1. Introduction

2. Proposed DSS

3. Model Inversion

4. Computational Results

5. Conclusions and further work
Model Inversion

What we can do when the problem is not satisfiable?
- Model inversion to offer user support for constraint relaxation

What the model inversion is?
- decision variables \rightarrow parameters
- parameters \rightarrow decision variables

We propose model inversion techniques for the vehicle selection phase
Model inversion for the vehicle selection phase

- Decision: Vehicles to use to solve the problem
- Capacity constraints satisfaction (weight, volume, length)
- Compute a lower bound for the number of vehicles
Model inversion for the vehicle selection phase

Methodology

- Identify the parameters of the constraints
- Each constraint has its own model inversion mechanism
 - Identify the parameters susceptible to be modified
 - Data analysis to select the parameters to modify
 - Geographic criterion
 - Temporal criterion
Model inversion for the vehicle selection phase

Geographic criterion

- \(k \)-means algorithm to compose \(m \) groups of customers

Iteration 1

\(c_1 \) \(g_1^1 \) \(g_1^2 \)

\(c_2 \)

Iteration 2

\(g_1^1 \) \(g_1^2 \)

\(g_2^1 \) \(g_2^2 \)
The customers being part of the same cluster have a high probability to belong to the same route.

For each customer \(i \) of cluster \(P_k \) the mean distance between the customer with the other customers of the cluster is computed

\[
dm_i = \frac{\sum d_{ij}}{|P_k| - 1}, \quad j \in P_k
\]

The \(dm_i \) is used as indicator to decide whether a customer is candidate to be suppressed.
Temporal criterion

- We propose a dissimilarity index to measure the degree of centering between two time windows

\[
\delta(i, j) = \begin{cases}
1 - \frac{\min(d_j - r_i, d_i - r_j)}{\max(d_j - r_i, d_i - r_j)} & \text{if } \min(d_i, d_j) \geq \max(r_i, r_j), \\
1 - \frac{\min(d_j - r_i, d_i - r_j)}{\frac{1}{n} \sum_{i=1}^{n} (d_i - r_i)} & \text{otherwise}.
\end{cases}
\]
Dynamic cluster algorithm to group the customers with overlapping TW

Identify the set(s) of critical customers (criterion $|P_k| > \text{limit}$)

k-means algorithm (only for the critical customers) to identify the customers to suppress in priority

Gacias, Cegarra, Lopez (LAAS, CLLE) A decision support system for vehicle routing甲
Example

- Problem with 7 customers C_i with TW $[r_i, d_i]$
- $Bl_{nv} = 3$ because of TW
 - $V(C_3) \neq V(C_4)$
 - $V(C_3) \neq V(C_6)$
 - $V(C_4) \neq V(C_6)$
- The planner proposes a solution with only two vehicles \rightarrow not satisfiable
Model inversion for the vehicle selection phase

Exemple

- Identification of the parameters: decision to serve the customers C_3, C_4 and C_6
- Geographic criterion (k-means algorithm) $\rightarrow C_6$
- Temporal criterion (dynamic cluster algorithm + k-means algorithm) $\rightarrow C_4$
- The planner decides which customer is suppressed
Model inversion for the vehicle selection phase

Exemple

- Identification of the parameters: decision to serve the customers C_3, C_4 and C_6
- Geographic criterion (k-means algorithm) $\rightarrow C_6$
- Temporal criterion (dynamic cluster algorithm + k-means algorithm) $\rightarrow C_4$
- The planner decides which customer is suppressed

\[C_2 \times \times \times C_4 \]

[Depot]

\[\times \]

\[C_6 \]
Plan

1. Introduction
2. Proposed DSS
3. Model Inversion
4. Computational Results
5. Conclusions and further work
Computational Results

56 instances

<table>
<thead>
<tr>
<th>nc = 9</th>
<th>Nb_Opt_Dist</th>
<th>Avg_Opt</th>
<th>Avg_Pos</th>
<th>Nb_Sol</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC-C</td>
<td>13 (17)</td>
<td>8.73 %</td>
<td>2.7</td>
<td>6</td>
</tr>
<tr>
<td>GC-R</td>
<td>9 (23)</td>
<td>5.99 %</td>
<td>3.5</td>
<td>17</td>
</tr>
<tr>
<td>GC-RC</td>
<td>9 (16)</td>
<td>5.01 %</td>
<td>3.2</td>
<td>5</td>
</tr>
<tr>
<td>TC-C</td>
<td>5 (17)</td>
<td>14.98 %</td>
<td>4.5</td>
<td>7</td>
</tr>
<tr>
<td>TC-R</td>
<td>3 (23)</td>
<td>11.46 %</td>
<td>5.4</td>
<td>7</td>
</tr>
<tr>
<td>TC-RC</td>
<td>4 (16)</td>
<td>9.30 %</td>
<td>5.3</td>
<td>7</td>
</tr>
<tr>
<td>DDC-C</td>
<td>8 (17)</td>
<td>15.76 %</td>
<td>4.3</td>
<td>8</td>
</tr>
<tr>
<td>DDC-R</td>
<td>5 (23)</td>
<td>10.97 %</td>
<td>4.7</td>
<td>11</td>
</tr>
<tr>
<td>DDC-RC</td>
<td>3 (16)</td>
<td>9.12 %</td>
<td>4.5</td>
<td>4</td>
</tr>
</tbody>
</table>

Total | 37 | 38
Introduction

Proposed DSS

Model Inversion

Computational Results

Conclusions and further work
Conclusions

- Interdisciplinary approach: Human factors and Operations Research techniques are considered for the DSS design
- The user participates in the solving phase
- Data analysis techniques for the model inversion when the problem becomes not satisfiable
Further work

- Propose a model inversion mechanism for each type of constraint
- Propose an algorithm for the time window relaxation
- Extend the model inversion to the other phases of the system