Lagrangian relaxation-based lower bound for resource-constrained modulo scheduling.

Maria Alejandra Ayala¹, Christian Artigues¹, Bernat Gacias¹

¹LAAS-CNRS; Université de Toulouse, France

 $\{mayala, artigues, bgacias\}@laas.fr$

ISCO 2010

Ayala, Artigues, Gacias (LAAS)

Lagrangian relaxation for the RCMSP

ISCO 2010 1 / 24

- Time indexed linear programming formulation for the resource constrained modulo scheduling.
- 3 Lagrangian relaxation
- Experimental results.
- Sonclusion and future work.

Outline

Introduction and problem presentation.

- 2 Time indexed linear programming formulation for the resource constrained modulo scheduling.
- 3 Lagrangian relaxation
- 4 Experimental results.
- 5 Conclusion and future work.

Industrial context : VLIW instruction schedling

- The instruction scheduling problem is defined by a set of operations to schedule, a set of dependences between these operations, and a target processor micro-architecture. An operation is considered as an instance of an instruction in a program text.
- Modulo scheduling is a software pipelining framework, based only on 1-periodic cyclic schedules with integral period λ.
- The modulo scheduling algorithm must take into account the constraints of the target processor, this is, latencies of operations, resources, and size of the register files.

ISCO 2010 5 / 24

Resource constrained modulo scheduling problem : data

- A set of *n* generic operations with unit durations and a set of *m* resources.
- Each resource has a limited availability B_s .
- Each generic operation requires b_i^s units of each resource s.
- A set E of dependences is defined where for each (i, j) ∈ E, a latency θ^j_i and a distance ω^j_i are given.

Resource constraints

Each task uses each resource such that $\exists s, b_i^s > 0$ at time $\sigma_i \mod \lambda$

Resource constrained modulo scheduling problem

- Decision variables : start time $\sigma_i \in \{0, ..., T\}$, where T is the time horizon, for each generic operation i = 1, ..., n
- Minimize λ , subject to
 - modulo resource constraints $\sum_{\sigma_i \mod \lambda = \tau} b_i^s \leq B_s, \forall \tau \in \{0, \dots, \lambda - 1\} \text{ and } \forall s \in \{1, \dots, m\}$
 - dependence constraints $\sigma_j \ge \sigma_i + \theta_i^j - \lambda \omega_i^j$, for all $(i, j) \in E$

Remark 1 : strongly NP-hard

Remark 2 : For a fixed λ , find a feasible solution for a resource-constrained project scheduling problem with minimum and maximum time lags.

Ayala, Artigues, Gacias (LAAS) Lagrangia

Exemple.

Resource	Capacity
ALU	4
MEM	1
CTL	1
ODD	2

RESERVATION	ALU	MEM	CTL	ODD
ALU	1	0	0	0
ALUX	2	0	0	1
MUL	1	0	0	1
MULX	2	0	0	1
MEM	1	1	0	0
MEMX	2	1	0	1
CTL	1	0	1	1

<u>-</u>

 $\lambda = 2$

A (1) > A (2) > A

Ayala, Artigues, Gacias (LAAS)

ISCO 2010 9 / 24

- 2 Time indexed linear programming formulation for the resource constrained modulo scheduling.
- 3 Lagrangian relaxation
- 4 Experimental results.
- 5 Conclusion and future work.

Time indexed linear programming formulation for the resource constrained modulo scheduling.

Proposed by Dupont de Dinechin (2004). A fixed λ . Binary variables x_i^t such that $x_i^t = 1$ if only if $\sigma_i = t$, $\sigma_i = \sum_{t=0}^{T} t x_i^t$. The feasible set $\mathcal{X}(\lambda)$ is described by (1-4).

$$\sum_{t=0}^{T} x_i^t = 1, \forall i = 1, ..., n.$$
(1)

$$\sum_{i=1}^{n}\sum_{k=0}^{\lfloor \frac{T}{\lambda} \rfloor} x_i^{\tau+k\lambda} b_i^s \le B_s, \forall \tau \in \{0, \dots, \lambda-1\}, s \in \{1, \dots, m\}$$
(2)

$$\sum_{h=t}^{T} x_i^h + \sum_{h=0}^{t+\theta_i^j - \lambda \omega_i^j - 1} x_j^h \le 1, \forall t \in \{0, \dots, T\}, (i, j) \in E$$
(3)

$$x_i^t \in \{0, 1\}, \forall i = 1, ..., n, \forall t \in \{0, ..., T\}$$
 (4)

Time indexed linear programming formulation for the resource constrained modulo scheduling.

Let $\tilde{\mathcal{X}}(\lambda)$, the polyhedron defined by the linear relaxation of $\mathcal{X}(\lambda)$, i.e. constraints (1-3) and (5).

$$0 \le x_i^t \le 1, \forall i = 1, ..., n, \forall t \in \{0, ..., T\}$$
 (5)

A method to obtain a lower bound λ_{LP} is to solve repetitively linear programs via linear or binary search to find the smallest λ for which $\tilde{\mathcal{X}}(\lambda)$ is non-empty.

2 Time indexed linear programming formulation for the resource constrained modulo scheduling.

3 Lagrangian relaxation

- Experimental results.
- 5 Conclusion and future work.

Let now the linear expression

$$L_{\delta,\lambda}(x) = \sum_{s=1}^{m} \sum_{\tau=0}^{\lambda-1} \delta_{\tau,s} \left(\sum_{i=1}^{n-1} \sum_{t \mod \lambda = \tau} b_i^s x_i^t \right) - \sum_{s=1}^{m} \sum_{\tau=0}^{\lambda-1} \delta_{\tau,s} B_s$$

and the LP

$$\min\{L_{\delta,\lambda}(x): x \in \hat{\mathcal{X}}(\lambda)\}$$
(6)

•
$$\delta_{\tau,s} \geq 0$$
, for $\tau \in \{0, \dots, \lambda - 1\}$, $s \in \{1, \textit{Idots}, m\}$

- $\hat{\mathcal{X}}(\lambda)$ is the polyhedron defined by constraints (1),(3) and (5).
- $L^*_{\delta,\lambda}$ denote its optimal solution value.

A 3 > 4

Proposition 1.

 $\tilde{\mathcal{X}}(\lambda)$ is empty if for some $\delta \geq 0$, $\hat{\mathcal{X}}(\lambda)$ is empty or $L^*_{\delta,\lambda} > 0$. A lower bound λ_{LR} for the minimal period can be obtained by finding the smallest λ value (through linear of binary search) for which the so-called lagrangian dual problem (LR) defined by :

$$\max_{\delta \ge 0} \min\{L_{\delta,\lambda}(x) : x \in \hat{\mathcal{X}}(\lambda)\}$$
(7)

has a non positive optimal solution $(L^*_{\lambda} \leq 0)$. Furthermore, (LR) has the integrity property since $Co\{x \in \{0,1\} \cap \hat{\mathcal{X}}(\lambda)\} = \hat{\mathcal{X}}(\lambda)$, where Co(X) denotes the convex hull of set X. It follows that $\lambda_{LR} = \lambda_{LP}$.

Lagrangian subproblem.

• Lagrangian subproblem is defined by

$$\min\{L_{\delta,\lambda}(x): x \in \hat{\mathcal{X}}(\lambda)\}$$
(8)

if we define weights

$$f_{i,t} = \sum_{s=1}^{m} b_i^s \delta_{t \mod \lambda, s}.$$
 (9)

The Lagrangian subproblem can be written as

$$\min\{\sum_{i=1}^{n-1}\sum_{t=0}^{T-1}f_{i,t}x_i^t:x\in\hat{\mathcal{X}}(\lambda)\}$$
(10)

A special case of the scheduling problem with start-time-dependent costs described in Möhring et al (2003).

Ayala, Artigues, Gacias (LAAS)

ISCO 2010 16 / 24

Lagrangian subproblem

▶ ◀ Ē ▶ Ē 少�? ISCO 2010 17 / 24

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Theorem 1 (Möhring et al 2003) describes the transformation of (8) to a minimum cut problem.

Theorem

There is a one to one correspondance between minimum a - b cuts (X, \overline{X}) of G wth exactly n forward arcs and the optimal solutions x of (8) by virtue of $x_{i,t} = 1$ if $(v_{i,t}, v_{i,t+1})$ is a forward arc of the cut (X, \overline{X}) and $x_{i,t} = 0$ otherwise. The value w(x) of an optimal solution of (8) equals the capacity $c(X, \overline{X})$ of any minimum cut (X, \overline{X}) of G

Solving the lagrangian dual poblem.

Subgradient algorithm for min $\sum_{i=1}^{n-1} \sum_{t=0}^{T_{max-1}} f_{i,t} x_i^t : x \in \hat{\mathcal{X}}(\lambda)$

1:
$$\delta = (\delta_{\tau,s})_{\tau \in \{0,...,\lambda-1\}}^{s \in \{1,...,m\}} = 0.$$

- 2: Solve max flow and get min cut $(X, \overline{X}) \to L_{\delta,\lambda}(x)$.
- 3: if $L_{\delta,\lambda}(x) > 0$ then STOP.
- 4: end if
- 5: Compute subgradient $g_{s,\tau}^k = \sum_{i=i}^{n-1} b_i^s (\sum_{t \mod \lambda = \tau} x_{i,t}^k) B_s$.
- 6: Compute scalar step size $\gamma^k = \gamma(L^* L_{\delta}(x^k)) / \|g^k\|^2$.
- 7: Update the vector of Lagrangian multipliers of the k + 1th iteration $\rightarrow \delta^{k+1} = [\delta^k + \gamma^k g^k]^+.$
- 8: If no substantial improvement could be achieved within 15 iterations, STOP.
- 9: Jump to step 2.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2 Time indexed linear programming formulation for the resource constrained modulo scheduling.

3 Lagrangian relaxation

Experimental results.

5) Conclusion and future work.

We implemented the Lagrangian relaxation for the RCMSP to compute a lower bound for the period λ for instruction scheduling instances of the production compiler for the STMicroelectronics ST200 VLIW processor family.

TABLE: Lower bound for λ

Instances	λ_0	$\lambda_{LP,LR}$	CPU LP (s)	CPU <i>LR</i> (s)	CPU <i>LR</i> * (s)
adpcm-st231.1	11	21	14.1	20.22	9.002
gsm-st231.1	24	24	35.85	22.03	18.37
gsm-st231.2	12	26	29.31	24.03	17.589
gsm-st231.5	4	11	13.27	11.25	4.02
gsm-st231.6	3	7	4.12	2.21	0.010
gsm-st231.7	4	11	5.09	4.03	1.006
gsm-st231.10	1	4	1.03	0.98	0.052
gsm-st231.20	3	6	1.29	1.12	0.044
gsm-st231.29	4	11	4.32	3.27	1.005
gsm-st231.40	2	10	13.25	12.27	4.10

Ayala, Artigues, Gacias (LAAS)

▶ < E ▶ E ∽ Q C ISCO 2010 22 / 24

(日)

2 Time indexed linear programming formulation for the resource constrained modulo scheduling.

3 Lagrangian relaxation

4 Experimental results.

- The results show that the proposed lagrangian relaxation method allows to obtain the same lower bound as the direct solving of the LP formulation with substantially lower computational requirements.
- Heuristic based on lagrangian relaxation
- Direct minimization of λ