

A. LAHIMER¹, <u>P. LOPEZ¹</u>, M. HAOUARI²

¹ LAAS-CNRS ; Université de Toulouse, France ² INSAT, Tunisie

{lahimer,lopez}@laas.fr, mohamed.haouari@ozyegin.edu.tr

- Problem Definition
- 2 Discrepancy Methods
- Proposal : Climbing Depth-Bounded Adjacent Discrepancy Search

< □ > < @ > < 注 > < 注 > ... 注

- Generational Study
- 5 Conclusion

- Problem Definition
 - Multiprocessor Hybrid Flow shop

Multiprocessor Hybrid Flow shop

- Problem Definition
 - Multiprocessor Hybrid Flow shop

Multiprocessor Hybrid Flow shop

- Problem Definition
 - Multiprocessor Hybrid Flow shop

Multiprocessor Hybrid Flow shop

2

イロン イヨン イヨン イヨン

- Problem Definition
 - Multiprocessor Hybrid Flow shop

Multiprocessor Hybrid Flow shop

 $Fm(Pm_1,...,Pm_m)|size_{ij}|C_{max}$

2

◆□▶ ◆圖▶ ◆厘▶ ◆厘▶

Problem Definition

Applications

Some Applications

 Manufacturing: work-force assignment, transportation problem with recirculation...

Operating Systems

Real-time machine vision

Problem Definition

Applications

Some Applications

- Manufacturing: work-force assignment, transportation problem with recirculation...
- Operating Systems
- Real-time machine vision

Complexity: NP-hard in the strong sense [J.A. Hoogeven, 1996]

イロン イヨン イヨン イヨン

- Problem Definition
 - State-Of-the-Art

Literature Review

Approaches

- Genetic Algorithm [C. Oğuz et al., 2003]
- Tabu Search [C. Oğuz et al., 2004]
- Ant Colony System [F.S. Şerifoğlu et al., 2006]
- Particle Swarm Optimization [M.F. Ercan et al., 2007]
- Constraint Programming [A. Jouglet et al., 2009]

- Problem Definition
 - State-Of-the-Art

Literature Review

Approaches

- Genetic Algorithm [C. Oğuz et al., 2003]
- Tabu Search [C. Oğuz et al., 2004]
- Ant Colony System [F.S. Şerifoğlu et al., 2006]
- Particle Swarm Optimization [M.F. Ercan et al., 2007]
- Constraint Programming [A. Jouglet et al., 2009]

Lower Bounds

- Specific to F2 [C. Oğuz et al., 2003]
- Adapted to Fm [C. Oğuz et al., 2004]

Discrepancy Methods

General Statement

General Statement

 Genesis: LDS (Limited Discrepancy Search) [Harvey & Ginsberg, 1995]

Discrepancy Methods

General Statement

General Statement

 Genesis: LDS (Limited Discrepancy Search) [Harvey & Ginsberg, 1995]

- Discrepancy Methods
 - General Statement

General Statement

 Genesis: LDS (Limited Discrepancy Search) [Harvey & Ginsberg, 1995]

• A discrepancy = any decision point in the search tree where the choice goes against the heuristic

Discrepancy Methods

ILDS: Improved LDS [R. Korf, 1996]

FIGURE: Improved Limited Discrepancy Search

Discrepancy Methods

DDS: Depth-bounded Discrepancy Search [T. Walsh, 1997]

Discrepancy Methods

L_{CDS}

CDS: Climbing Discrepancy Search [Milano & Roli, 2002]

FIGURE: A CDS scenario

イロン イ団 とく ヨン イヨン

Proposal: Climbing Depth-Bounded Adjacent Discrepancy Search
 DADS

DADS: Depth-bounded Adjacent Discrepancy Search

FIGURE: DADS

イロン イヨン イヨン イヨン

Proposal: Climbing Depth-Bounded Adjacent Discrepancy Search
 DADS

DADS: Depth-bounded Adjacent Discrepancy Search

Proposal: Climbing Depth-Bounded Adjacent Discrepancy Search

L CDADS

Climbing DADS

SRef

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへで

Proposal: Climbing Depth-Bounded Adjacent Discrepancy Search

└─ CDADS

Climbing DADS

10 / 20

Proposal: Climbing Depth-Bounded Adjacent Discrepancy Search

CDADS

Climbing DADS

Proposal: Climbing Depth-Bounded Adjacent Discrepancy Search

CDADS

Climbing DADS

Proposal: Climbing Depth-Bounded Adjacent Discrepancy Search
 CDADS

- CDADS

Climbing DADS

10 / 20

Proposal: Climbing Depth-Bounded Adjacent Discrepancy Search
 CDADS

Climbing DADS

10 / 20

Proposal: Climbing Depth-Bounded Adjacent Discrepancy Search L CDADS

Climbing DADS

Proposal: Climbing Depth-Bounded Adjacent Discrepancy Search
 CDADS

Climbing DADS

10 / 20

Proposal: Climbing Depth-Bounded Adjacent Discrepancy Search
 CDADS

Climbing DADS

Proposal: Climbing Depth-Bounded Adjacent Discrepancy Search
 CDADS

Climbing DADS

Stopping Conditions

- CPU time (60 sec)
- Cost(Sol)=LB

Proposal: Climbing Depth-Bounded Adjacent Discrepancy Search
 Heuristics

Heuristics Selection

- CDADS is strongly based on the quality of the initial solution
- An experimental comparison between various priority rules presented in the literature to consider the most effective

Proposal: Climbing Depth-Bounded Adjacent Discrepancy Search
 Heuristics

Heuristics Selection

- CDADS is strongly based on the quality of the initial solution
- An experimental comparison between various priority rules presented in the literature to consider the most effective

Priority Rule	Performance (%)	
$NSPT_LastStage$	27	
Energy	25	
SPT	17	
SPR	14	

TABLE: Heuristics Selection

Proposal: Climbing Depth-Bounded Adjacent Discrepancy Search
 Heuristics

Heuristics Selection

- CDADS is strongly based on the quality of the initial solution
- An experimental comparison between various priority rules presented in the literature to consider the most effective

Priority Rule	Performance (%)	
NSPT_LastStage	27	
Energy	25	
SPT	17	
SPR	14	

TABLE: Heuristics Selection

Shortest Processing Requirement: sizeij increasing order

Proposal: Climbing Depth-Bounded Adjacent Discrepancy Search
 Heuristics

Heuristics Selection

- CDADS is strongly based on the quality of the initial solution
- An experimental comparison between various priority rules presented in the literature to consider the most effective

Priority Rule	Performance (%)	
$NSPT_LastStage$	27	
Energy	25	
SPT	17	
SPR	14	

TABLE: Heuristics Selection

Shortest Processing Time: *p_{ij}* increasing order

Proposal: Climbing Depth-Bounded Adjacent Discrepancy Search
 Heuristics

Heuristics Selection

- CDADS is strongly based on the quality of the initial solution
- An experimental comparison between various priority rules presented in the literature to consider the most effective

Priority Rule	Performance (%)	
$NSPT_LastStage$	27	
Energy	25	
SPT	17	
SPR	14	

TABLE: Heuristics Selection

 $energy_{ij} = size_{ij} \times p_{ij}$

Proposal: Climbing Depth-Bounded Adjacent Discrepancy Search
 Heuristics

Heuristics Selection

- CDADS is strongly based on the quality of the initial solution
- An experimental comparison between various priority rules presented in the literature to consider the most effective

Priority Rule	Performance (%)	
$NSPT_LastStage$	27	
Energy	25	
SPT	17	
SPR	14	

TABLE: Heuristics Selection

NSPT: Normalized SPT

- Proposal: Climbing Depth-Bounded Adjacent Discrepancy Search
 - Schedule Generation Scheme (SGS)

Schedule Generation Scheme

- Two Types of SGSs
 - Serial SGS [Kelley et al., 1963]
 - Parallel SGS [Brooks et al., 1965]
- Generated Schedules
 - Serial SGSs generate active schedules.
 - Parallel SGSs generate non-delay schedules.
- According to our experimental studies, a parallel SGS is more adapted to our problem.

(日) (同) (三) (三)

Proposal: Climbing Depth-Bounded Adjacent Discrepancy Search

Lower Bounds

Lower Bounds

 $LB = \max(LB_s, LB_j)$

$$LB_{s} = \max_{i=1..m} LB(i)$$

$$LB(i) = \min_{j \in J} (\sum_{l=1}^{i-1} p_{lj}) + max(M_{1}(i), M_{2}(i), \max_{j \in J} (p_{lj})) + \min_{j \in J} (\sum_{l=i+1}^{m} p_{lj})$$

$$M_{1}(i) = \left[\frac{1}{m_{i}} \sum_{j \in J} p_{lj} size_{lj} \right]$$

$$M_{2}(i) = \sum_{j \in A_{i}} p_{lj} + \frac{1}{2} \sum_{j \in B_{i}} p_{lj}$$

$$LB_{j} = \max_{j \in J} (\sum_{i=1}^{m} p_{ij}).$$

2

Proposal: Climbing Depth-Bounded Adjacent Discrepancy Search

Lower Bounds

Lower Bounds

 $LB = \max(LB_s, LB_j)$

$$LB_{s} = \max_{i=1..m} LB(i)$$

$$LB(i) = \min_{j \in J} (\sum_{l=1}^{i-1} p_{lj}) + \max(M_{1}(i), M_{2}(i), \max_{j \in J}(p_{lj})) + \min_{j \in J} (\sum_{l=i+1}^{m} p_{lj})$$

$$M_{1}(i) = \left[\frac{1}{m_{i}} \sum_{j \in J} p_{lj} size_{lj} \right]$$

$$M_{2}(i) = \sum_{j \in A_{i}} p_{lj} + \frac{1}{2} \sum_{j \in B_{i}} p_{lj}$$

$$LB_{j} = \max_{j \in J} (\sum_{l=1}^{m} p_{lj}).$$

2

Proposal: Climbing Depth-Bounded Adjacent Discrepancy Search

Lower Bounds

Lower Bounds

 $LB = \max(LB_s, LB_j)$

$$LB_{s} = \max_{i=1..m} LB(i)$$

$$LB(i) = \min_{j \in J} (\sum_{l=1}^{i-1} p_{lj}) + \max(M_{1}(i), M_{2}(i), \max_{j \in J}(p_{lj})) + \min_{j \in J} (\sum_{l=i+1}^{m} p_{lj})$$

$$M_{1}(i) = \left[\frac{1}{m_{i}} \sum_{j \in J} p_{ij} size_{ij} \right]$$

$$M_{2}(i) = \sum_{j \in A_{i}} p_{ij} + \frac{1}{2} \sum_{j \in B_{i}} p_{ij}$$

$$A_{i} = \{j | size_{ij} > \frac{m_{i}}{2} \}, B_{i} = \{j | size_{ij} = \frac{m_{i}}{2} \}.$$

$$LB_{j} = \max_{j \in J} (\sum_{i=1}^{m} p_{ij}).$$

2

Proposal: Climbing Depth-Bounded Adjacent Discrepancy Search

Lower Bounds

Lower Bounds

 $LB = \max(LB_s, LB_j)$

$$LB_{s} = \max_{i=1..m} LB(i)$$

$$LB(i) = \min_{j \in J} (\sum_{l=1}^{i-1} p_{lj}) + \max(M_{1}(i), M_{2}(i), \max_{j \in J}(p_{lj})) + \min_{j \in J} (\sum_{l=i+1}^{m} p_{lj})$$

$$M_{1}(i) = \left[\frac{1}{m_{i}} \sum_{j \in J} p_{lj} size_{lj} \right]$$

$$M_{2}(i) = \sum_{j \in A_{i}} p_{lj} + \frac{1}{2} \sum_{j \in B_{i}} p_{lj}$$

$$M_{2}(i) = \sum_{j \in A_{i}} p_{lj} + \frac{1}{2} \sum_{j \in B_{i}} p_{lj}$$

$$M_{2}(i) = \sum_{j \in J} (\sum_{l=1}^{m} p_{lj}) , B_{i} = \{j | size_{lj} = \frac{m_{i}}{2} \}.$$

2

Proposal: Climbing Depth-Bounded Adjacent Discrepancy Search

Lower Bounds

Lower Bounds

 $LB = \max(LB_s, LB_j)$

$$LB_{s} = \max_{i=1..m} LB(i)$$

$$LB(i) = \min_{j \in J} (\sum_{l=1}^{i-1} p_{lj}) + \max(M_{1}(i), M_{2}(i), \max_{j \in J}(p_{ij})) + \min_{j \in J} (\sum_{l=i+1}^{m} p_{lj})$$

$$M_{1}(i) = \left[\frac{1}{m_{i}} \sum_{j \in J} p_{ij} size_{ij} \right]$$

$$M_{2}(i) = \sum_{j \in A_{i}} p_{ij} + \frac{1}{2} \sum_{j \in B_{i}} p_{ij}$$

$$A_{i} = \{j | size_{ij} > \frac{m_{i}}{2}\}, B_{i} = \{j | size_{ij} = \frac{m_{i}}{2}\}.$$

$$LB_{j} = \max_{j \in J} (\sum_{i=1}^{m} p_{ij}).$$

2

Computational Study

L Test beds

Test beds

Implementation

PC Intel Centrino 2 Duo 2 GHz OS: Ubuntu language: C++

æ

Computational Study

L Test beds

Test beds

Implementation

PC Intel Centrino 2 Duo 2 GHz OS: Ubuntu language: C++

Oğuz et al. 's Benchmark, 2004

Size: 300 instances number of jobs: $\{5, 10, 20, 50, 100\}$ number of stages: $\{2, 5, 8\}$ 2 Categories: 'Type_1' and 'Type_2' 'Type_1': $m_i = 1, ..., 5$ 'Type_2': $m_i = 5$

<四> <圖> <圖> < 圖> < 圖> < 圖> :

Computational Study

L Test beds

Test beds

Implementation

PC Intel Centrino 2 Duo 2 GHz OS: Ubuntu language: C++

Oğuz et al. 's Benchmark, 2004

Size: 300 instances number of jobs: $\{5, 10, 20, 50, 100\}$ number of stages: $\{2, 5, 8\}$ 2 Categories: 'Type_1' and 'Type_2' 'Type_1': $m_i = 1, ..., 5$ 'Type_2': $m_i = 5$

Indicators

Deviation (%): • $100 \times \frac{C_{max} - LB}{LB}$ • $100 \times \frac{C_{max} - C^*_{max}}{C^*_{max}}$ CPU time (sec)

Computational Study

CDADS Performance

CDADS Performance

		'Type_1' Problems		'Type_2' Problems	
n	m	Avg %dev	CPU (s)	Avg %dev	CPU (s)
5	2	0.00	< 0.1	0.00	< 0.1
	5	0.21	< 0.1	0.46	< 0.1
	8	1.71	< 0.1	0.50	< 0.1
10	2	0.00	< 0.1	1.72	< 0.1
	5	0.66	0.40	6.44	< 0.1
	8	8.47	< 0.1	9.61	< 0.1
20	2	0.05	0.10	3.34	3.10
	5	2.57	1.10	7.97	1.30
	8	5.11	0.20	15.00	1.30
50	2	0.49	2.30	1.74	4.20
	5	0.54	5.00	8.20	13.50
	8	1.62	6.80	12.42	33.40
100	2	0.08	11.10	3.32	22.80
	5	1.50	13.60	10.75	40.90
	8	1.86	11.00	14.33	47.30
Av	g %dev	1.66		6.39	
СР	U (s)		3.44		10.53

TABLE: CDADS Performance

(ロ) (個) (目) (目) (日) (の)

Computational Study

CDADS Vs literature

CDADS Vs literature

Computational Study

CDADS Vs literature

CDADS Vs literature

Computational Study

CDADS Vs literature

CDADS Vs literature

The rate of improvement reaches 25

FIGURE: Variation of the number of improved solutions with the number of jobs

・ロン ・四 と ・ ヨン ・ ヨン

- Conclusion
 - Contributions

Contributions

CDADS provides better solutions in little CPU time;

- CDADS excels on large instances;
- The proposed LB is efficient [Oğuz & Ercan, 2005];
- Experimental study shows the most adapted heuristics to the studied problem.

- Conclusion
 - Contributions

Contributions

- CDADS provides better solutions in little CPU time;
- CDADS excels on large instances;
- The proposed LB is efficient [Oğuz & Ercan, 2005];
- Experimental study shows the most adapted heuristics to the studied problem.

- Conclusion
 - Contributions

Contributions

- CDADS provides better solutions in little CPU time;
- CDADS excels on large instances;
- The proposed LB is efficient [Oğuz & Ercan, 2005];
- Experimental study shows the most adapted heuristics to the studied problem.

- Conclusion
 - Contributions

Contributions

- CDADS provides better solutions in little CPU time;
- CDADS excels on large instances;
- The proposed LB is efficient [Oğuz & Ercan, 2005];
- Experimental study shows the most adapted heuristics to the studied problem.

	~	
-	Conc	lusion

Prospects

Prospects

- Explore the impact of adjacent discrepancies vs. other strategies for limiting the search space;
- Consider the application of CDADS to simpler problems like classical hybrid flow shop ($size_{ij} = 1, \forall i, j$);
- Adapt the proposed implementation of discrepancy search to more general scheduling problems, in particular the Resource-Constrained Project Scheduling Problem;
- Propose a new lower bound based on linear relaxation of the RCPSP.

・ロン ・四 と ・ ヨン ・ ヨン

	~	
-	Conc	lusion

Prospects

Prospects

- Explore the impact of adjacent discrepancies vs. other strategies for limiting the search space;
- Consider the application of CDADS to simpler problems like classical hybrid flow shop ($size_{ij} = 1, \forall i, j$);
- Adapt the proposed implementation of discrepancy search to more general scheduling problems, in particular the Resource-Constrained Project Scheduling Problem;
- Propose a new lower bound based on linear relaxation of the RCPSP.

・ロン ・四 と ・ ヨン ・ ヨン

	~	
-	Conc	lusion

Prospects

Prospects

- Explore the impact of adjacent discrepancies vs. other strategies for limiting the search space;
- Consider the application of CDADS to simpler problems like classical hybrid flow shop (*size_{ij}* = 1, ∀*i*, *j*);
- Adapt the proposed implementation of discrepancy search to more general scheduling problems, in particular the Resource-Constrained Project Scheduling Problem;

Propose a new lower bound based on linear relaxation of the RCPSP.

イロン イヨン イヨン イヨン

	~			
- (Loi	ncl	usi	on

Prospects

Prospects

- Explore the impact of adjacent discrepancies vs. other strategies for limiting the search space;
- Consider the application of CDADS to simpler problems like classical hybrid flow shop ($size_{ij} = 1, \forall i, j$);
- Adapt the proposed implementation of discrepancy search to more general scheduling problems, in particular the Resource-Constrained Project Scheduling Problem;
- Propose a new lower bound based on linear relaxation of the RCPSP.