Lots of research on tractable constraint problems
- Restricted language (e.g. 2SAT)
- Restricted constraint structure (e.g. tree)

But solvers often perform poorly on tractable problems
- Not enough to know it is tractable [Petke & Jeavons 2009]
- Detect membership to a tractable and apply the proper algorithm
Lots of research on tractable constraint problems
- Restricted language (e.g. 2SAT)
- Restricted constraint structure (e.g. tree)

But solvers often perform poorly on tractable problems
- Not enough to know it is tractable [Petke & Jeavons 2009]
- Detect membership to a tractable and apply the proper algorithm

Problems might be *nearly-tractable*
Solid edges: “easy” constraints / Dashed edges: “hard” constraints
Solid edges: “easy” constraints / Dashed edges: “hard” constraints
Branch on d
Solid edges: “easy” constraints / Dashed edges: “hard” constraints
Branch on d
 - Remove (a, d) and (d, g)
Motivation

- Identify a (hopefully) small number of variables
- Branch on these to give tractable subproblems
Identify a (hopefully) small number of variables
Branch on these to give tractable subproblems
find a backdoor [Williams et al. 2003]
Detecting tractable classes

Exploiting tractable classes
Contributions

- Detecting tractable classes
 - Detecting set of relations closed by a *majority polymorphism*
 - Detecting set of relations closed by a *Mal'tsev polymorphism*
- Exploiting tractable classes
Contributions

- Detecting tractable classes
 - Detecting set of relations closed by a *majority polymorphism*
 - Detecting set of relations closed by a *Mal'tsev polymorphism*

- Exploiting tractable classes
 - If given a tractable sublanguage: *easy*
 - Otherwise: *hard* (but there are positive results!)
Polymorphisms and Tractability

Constraint problems are tractable if their relations are closed under *majority* polymorphisms [Jeavons et al 1997]
- Generalization of 2-SAT and 0/1/all constraints

Constraint problems are tractable if their relations are closed under *Mal’tsev* polymorphisms [Bulatov & Dalmau 2006]
- Generalization of linear equations over a field
Polymorphism

- Operation f maps m values v_1, \ldots, v_m to another value $f(v_1, \ldots, v_m)$
- Similarly it maps m tuples τ_1, \ldots, τ_m to another tuple $f(\tau_1, \ldots, \tau_m)$
Polymorphism

- Operation f maps m values v_1, \ldots, v_m to another value $f(v_1, \ldots, v_m)$
- Similarly it maps m tuples τ_1, \ldots, τ_m to another tuple $f(\tau_1, \ldots, \tau_m)$

Example

- $f(x, y) = (x + y \mod 2)$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$R:$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Polymorphism

- Operation f maps m values v_1, \ldots, v_m to another value $f(v_1, \ldots, v_m)$
- Similarly, it maps m tuples τ_1, \ldots, τ_m to another tuple $f(\tau_1, \ldots, \tau_m)$

Example

- $f(x, y) = (x + y \mod 2)$

\[
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{array}
\]

$R :$
Polymorphism

- Operation f maps m values v_1, \ldots, v_m to another value $f(v_1, \ldots, v_m)$
- Similarly it maps m tuples τ_1, \ldots, τ_m to another tuple $f(\tau_1, \ldots, \tau_m)$

Example

- $f(x, y) = (x + y \mod 2)$

$$R: \begin{bmatrix}
1 & 1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}$$
Polymorphism

- Operation f maps m values v_1, \ldots, v_m to another value $f(v_1, \ldots, v_m)$
- Similarly it maps m tuples τ_1, \ldots, τ_m to another tuple $f(\tau_1, \ldots, \tau_m)$

Example

- $f(x, y) = (x + y \mod 2)$

\[
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{array}
\]
Polymorphism

- Operation f maps m values v_1, \ldots, v_m to another value $f(v_1, \ldots, v_m)$
- Similarly it maps m tuples τ_1, \ldots, τ_m to another tuple $f(\tau_1, \ldots, \tau_m)$

Example

- $f(x, y) = (x + y \mod 2)$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

R:
Polymorphism

- Operation f maps m values v_1, \ldots, v_m to another value $f(v_1, \ldots, v_m)$
- Similarly it maps m tuples τ_1, \ldots, τ_m to another tuple $f(\tau_1, \ldots, \tau_m)$

Example

- $f(x, y) = (x + y \mod 2)$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$R:$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Operation f maps m values v_1, \ldots, v_m to another value $f(v_1, \ldots, v_m)$.
Similarly it maps m tuples τ_1, \ldots, τ_m to another tuple $f(\tau_1, \ldots, \tau_m)$.

Example

$f(x, y) = (x + y \mod 2)$

\[R : \begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array} \]
Polymorphism

- Operation f maps m values v_1, \ldots, v_m to another value $f(v_1, \ldots, v_m)$
- Similarly it maps m tuples τ_1, \ldots, τ_m to another tuple $f(\tau_1, \ldots, \tau_m)$
- f is a polymorphism of R iff applying f to tuples of R does not produce new tuples

Example

- $f(x, y) = (x + y \mod 2)$

\[
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{array}
\]
Detecting Majority

- f is a **majority** operation iff $f(v, v, w) = f(v, w, v) = f(w, v, v) = v$
Detecting Majority

- f is a *majority* operation iff $f(v, v, w) = f(v, w, v) = f(w, v, v) = v$

Theorem 1

Majority polymorphisms can be detected in polynomial time
Detecting Majority

- f is a *majority* operation iff $f(v, v, w) = f(v, w, v) = f(w, v, v) = v$
- Polymorphisms of P are solutions of its *indicator problem* [Jeavons et al. 1997]
 - P and its indicator problem share the same set of relations
- A CSP closed under a majority polymorphism is solved backtrack-free by maintaining *singleton arc consistency* [Chen et al. 2013]

Theorem 1

Majority polymorphisms can be detected in polynomial time
Detecting Majority

- \(f \) is a \textit{majority} operation iff \(f(v, v, w) = f(v, w, v) = f(w, v, v) = v \)
- Polymorphisms of \(P \) are solutions of its \textit{indicator problem} [Jeavons et al. 1997]
 - \(P \) and its indicator problem share the same set of relations
- A CSP closed under a majority polymorphism is solved backtrack-free by maintaining \textit{singleton arc consistency} [Chen et al. 2013]

Theorem 1

Majority polymorphisms can be detected in polynomial time

Proof

- Run \textit{maintain SAC} on the indicator problem
 - If success, we obtain a solution, hence a polymorphism of \(P \)
 - If at any point there is a fail, we can deduce that the indicator problem has no majority polymorphism
Detecting (conservative) Mal’tsev

- f is a *Mal’tsev* operation iff $f(v, w, w) = f(w, w, v) = v$
- f is *conservative* iff $f(u, v, w) \in \{u, v, w\}$

Theorem 2

Conservative Mal’tsev polymorphisms can be detected in polynomial time on binary relations
Input: A CSP $P = (X, D, C)$, a set B such that $C \setminus B$ has a polymorphism

Question: is P satisfiable?
Input: A CSP $P = (X, D, C)$, a set B such that $C \setminus B$ has a polymorphism

Question: is P satisfiable?

- Backdoor of size k: search tree of size d^k
Exploiting Tractability

- Input: A CSP $P = (\mathcal{X}, \mathcal{D}, \mathcal{C})$, a set B such that $\mathcal{C} \setminus B$ has a polymorphism
- Question: is P satisfiable?
 - Backdoor of size k: search tree of size d^k

Fixed Parameter Tractability

- Given a problem A and a parameter k
- **Fixed Parameter Tractable** (FPT) iff there exists an algorithm which complexity is in $O(f(k)P(n))$
 - Any computable function f of k (for ex. 2^k)
 - A polynomial $P(n)$ in the size of the problem n
Input: A CSP $P = (X, D, C)$, a set B such that $C \setminus B$ has a polymorphism

Question: is P satisfiable?

- Backdoor of size k: search tree of size d^k

Fixed Parameter Tractability

- Given a problem A and a parameter k
- **Fixed Parameter Tractable** (FPT) iff there exists an algorithm which complexity is in $O(f(k)P(n))$
 - Any computable function f of k (for ex. 2^k)
 - A polynomial $P(n)$ in the size of the problem n
- $W[m]$-hardness by reduction from a $W[m]$-hard pair A', k'
Input: A CSP \(P = (X, D, C) \), a set \(B \) such that \(C \setminus B \) has a polymorphism.

Question: is \(P \) satisfiable?
Input: A CSP $P = (X, D, C)$, a set B such that $C \setminus B$ has a polymorphism

Question: is P satisfiable?
Input: A CSP \(P = (\mathcal{X}, \mathcal{D}, \mathcal{C}) \), a set \(B \) such that \(\mathcal{C} \setminus B \) has a polymorphism.

Question: Is \(P \) satisfiable?

The polymorphism is conservative.
Exploiting Tractability

- Input: A CSP \(P = (\mathcal{X}, \mathcal{D}, \mathcal{C}) \), a set \(B \) such that \(\mathcal{C} \setminus B \) has a polymorphism
- Question: is \(P \) satisfiable?

The polymorphism is \textit{conservative}

\[f(v_1, \ldots, v_m) \in \{v_1, \ldots, v_m\} \]
Exploiting Tractability

- **Input:** A CSP $P = (X, D, C)$, a set B such that $C \setminus B$ has a polymorphism.
- **Question:** is P satisfiable?

The polymorphism is *conservative*

- $f(v_1, \ldots, v_m) \in \{v_1, \ldots, v_m\}$
- Unary relations are closed under any conservative operation.
Exploiting Tractability

- Input: A CSP $P = (\mathcal{X}, \mathcal{D}, \mathcal{C})$, a set B such that $\mathcal{C} \setminus B$ has a polymorphism
- Question: is P satisfiable?

The polymorphism is conservative

- $f(v_1, \ldots, v_m) \in \{v_1, \ldots, v_m\}$
- Unary relations are closed under any conservative operation
- Eliminating a constraint \leftrightarrow assigning all (but one) of its variables
Exploiting Tractability

- Input: A CSP $P = (X, D, C)$, a set B such that $C \setminus B$ has a polymorphism
- Question: is P satisfiable?

The polymorphism is conservative

- $f(v_1, \ldots, v_m) \in \{v_1, \ldots, v_m\}$
- Unary relations are closed under any conservative operation
- Eliminating a constraint \leftrightarrow assigning all (but one) of its variables
- Backdoor: vertex cover of the primal graph of B $[O(2^k)]$
Exploiting Tractability

- **Input:** A CSP $P = (X, D, C)$, a set B such that $C \setminus B$ has a polymorphism
- **Question:** is P satisfiable?

The polymorphism is *conservative*

- $f(v_1, \ldots, v_m) \in \{v_1, \ldots, v_m\}$
- Unary relations are closed under any conservative operation
- Eliminating a constraint \leftrightarrow assigning all (but one) of its variables
- Backdoor: *vertex cover* of the primal graph of B [$O(2^k)$]
Input: A CSP $P = (X, D, C)$, a set B such that $C \setminus B$ has a polymorphism.

Question: is P satisfiable?

The polymorphism is \textit{conservative}.

- $f(v_1, \ldots, v_m) \in \{v_1, \ldots, v_m\}$
- Unary relations are closed under any conservative operation.
- Eliminating a constraint \iff assigning all (but one) of its variables.
- Backdoor: \textit{vertex cover} of the primal graph of B $[O(2^k)]$.
Input: A CSP \(P = (X, D, C) \), a set \(B \) such that \(C \setminus B \) has a polymorphism

Question: is \(P \) satisfiable?

The polymorphism is \textit{conservative}

- \(f(v_1, \ldots, v_m) \in \{v_1, \ldots, v_m\} \)
- Unary relations are closed under any conservative operation
- Eliminating a constraint \(\iff \) assigning all (but one) of its variables
- Backdoor: \textit{vertex cover} of the primal graph of \(B \) \([O(2^k)]\)
- Explore a \(d^k \) search tree
 - FPT in \(d + k \) (domain size and size of the vertex cover of \(B \))
Input: A CSP $P = (X, D, C)$, a set B such that $C \setminus B$ has a polymorphism

Question: is P satisfiable?

The polymorphism is *idempotent*

- $f(v, \ldots, v) = v$
- Eliminating a constraint \iff assigning all its variables
- Backdoor: all variables of B
Exploiting Tractability

- Input: A CSP \(P = (\mathcal{X}, \mathcal{D}, \mathcal{C}) \), a set \(B \) such that \(\mathcal{C} \setminus B \) has a polymorphism
- Question: is \(P \) satisfiable?

The polymorphism is **idempotent**

- \(f(v, \ldots, v) = v \)
- Eliminating a constraint \(\leftrightarrow \) assigning all its variables
- Backdoor: all variables of \(B \)
What if we don’t know B?

Finding a min backdoor to majority: **Partition-Majority-CSP**

- particular case: f is conservative majority, $P = (\mathcal{X}, \mathcal{D}, \mathcal{C})$ is binary
- compute a subset B of \mathcal{C} such that $\mathcal{C} \setminus B$ is closed under some majority operation and the vertex cover of B’s graph is minimum
What if we *don’t* know B?

- Finding a min backdoor to *majority*: \textsc{Partition-Majority-CSP}
 - particular case: f is conservative majority, $P = (\mathcal{X}, \mathcal{D}, \mathcal{C})$ is binary
 - compute a subset B of \mathcal{C} such that $\mathcal{C} \setminus B$ is closed under some majority operation and the vertex cover of B’s graph is minimum

Theorem 5

\textsc{Partition-Majority-CSP} is NP-hard
Identifying Tractable Subproblems

- What if we *don’t* know B?
 - Finding a min backdoor to *majority*: Partition-Majority-CSP
 - particular case: f is conservative majority, $P = (X, D, C)$ is binary
 - compute a subset B of C such that $C \setminus B$ is closed under some majority operation and the vertex cover of B's graph is minimum

Theorem 5

- **Partition-Majority-CSP** is NP-hard

Theorem 6

- **Partition-Majority-CSP** is $W[2]$-hard when the parameter is the size of the vertex cover
What if we *don’t* know B?

- Finding a min backdoor to *majority*: **Partition-Majority-CSP**
 - particular case: f is conservative majority, $P = (X, D, C)$ is binary
 - compute a subset B of C such that $C \setminus B$ is closed under some majority operation and the vertex cover of B’s graph is minimum

Theorem 5

Partition-Majority-CSP is NP-hard

Theorem 6

Partition-Majority-CSP is W[2]-hard when the parameter is the size of the vertex cover

Theorem 7

Partition-Majority-CSP is FPT for **domain + cover + language**
Empirical Results

- We used benchmarks from the 4th CSP Solver Competition
 - Are there *almost-majority-closed* problems?
 - If so, can we compute small backdoors in *practice*?
Empirical Results

- We used benchmarks from the 4th CSP Solver Competition
 - Are there *almost-majority-closed* problems?
 - If so, can we compute small backdoors in *practice*?

Algorithm

- Explore the possible partitions of the language of relations (branch & bound)
- Given a partition we compute the minimal vertex cover (to be used to branch & bound)
 - Cache partitions that block majority (nogoods)
 - Efficient algorithm for SAC (SAC3-SDS) [Bessiere et al. 2008]
 - Efficient algorithm for vertex cover [Balasubramanian et al. 1998]
Empirical Results

- We used benchmarks from the 4th CSP Solver Competition
 - Are there *almost-majority-closed* problems?
 - If so, can we compute small backdoors in *practice*?

- Out of 191 instances put in extensional form:
 - On 135 instances, the indicator problem is too large
 - On 40 instances, the backdoor is large (trivial)
Empirical Results

- We used benchmarks from the 4th CSP Solver Competition
 - Are there *almost-majority-closed* problems?
 - If so, can we compute small backdoors in *practice*?

- Out of 191 instances put in extensional form:
 - On 135 instances, the indicator problem is too large
 - On 40 instances, the backdoor is large (trivial)
 - On a serie of 5 prime instances we found small backdoors (0 to 6 variables out of 100)
 - On 1 driverlogw instance we found a non-trivial backdoor (22 variables out of 71)
Empirical Results

We used benchmarks from the 4th CSP Solver Competition

- Are there almost-majority-closed problems? A few
- If so, can we compute small backdoors in practice? Sometimes

Out of 191 instances put in extensional form:

- On 135 instances, the indicator problem is too large
- On 40 instances, the backdoor is large (trivial)
- On a serie of 5 prime instances we found small backdoors (0 to 6 variables out of 100)
- On 1 driverlogw instance we found a non-trivial backdoor (22 variables out of 71)
We can exploit constraint problems that are *nearly* tractable
- Compute a *tractable sub-language*
 - *Detect membership* efficiently
- Compute a *backdoor* to this sub-language
- Branch on the backdoor

Computing a majority-backdoor is W[2]-hard in the vertex cover size, however FPT in $d + k + r$
- Domain size, vertex cover size, language cardinality
Conclusion

- We can exploit constraint problems that are *nearly* tractable
 - Compute a *tractable sub-language*
 - *Detect membership* efficiently
 - Compute a *backdoor* to this sub-language
 - Branch on the backdoor
- Computing a majority-backdoor is W[2]-hard in the vertex cover size, however FPT in $d + k + r$
 - Domain size, vertex cover size, language cardinality

Questions?
Detecting (conservative) Mal’tsev

- f is a **Mal’tsev** operation iff $f(v, w, w) = f(w, w, v) = v$
Detecting (conservative) Mal’tsev

- f is a Mal’tsev operation iff $f(v, w, w) = f(w, w, v) = v$

Theorem 2

Conservative Mal’tsev polymorphisms can be detected in polynomial time on binary relations
Detecting (conservative) Mal’tsev

- \(f \) is a \textit{Mal’tsev} operation iff \(f(v, w, w) = f(w, w, v) = v \)
- \(f \) is \textit{conservative} iff \(f(u, v, w) \in \{u, v, w\} \) (vars of the indicator problem)
- If \(R \) is binary and Mal’tsev, then it is a set of bicliques \cite{Bulatov2002}

Theorem 2

Conservative Mal’tsev polymorphisms can be detected in polynomial time on binary relations
Detecting (conservative) Mal’tsev

- \(f \) is a Mal’tsev operation iff \(f(v, w, w) = f(w, w, v) = v \)
- \(f \) is conservative iff \(f(u, v, w) \in \{u, v, w\} \) (vars of the indicator problem)
- If \(R \) is binary and Mal’tsev, then it is a set of bicliques [Bulatov 2002]

Theorem 2
Conservative Mal’tsev polymorphisms can be detected in polynomial time on binary relations

Proof: only three cases

```
1 - 1 - 1
|   |   |   |
2 - 2 - 2
|   |   |   |
3 - 3 - 3
```

```
1 - 1 - 1
|   |   |   |
2 - 2 - 2
|   |   |   |
3 - 3 - 3
```

```
1 - 1 - 1
|   |   |   |
2 - 2 - 2
|   |   |   |
3 - 3 - 3
```
Given a set of relations Γ:

- CSP which solutions are polymorphisms of Γ
- A variable for each m-tuple of values
 - represents the image of this m-tuple by the polymorphism
- For each relation $R \in \Gamma$, and for each permutation of m tuples $\tau_1, \ldots, \tau_m \in R$ we post the constraint R on the image variables
Given a set of relations Γ:
- CSP which solutions are polymorphisms of Γ
- A variable for each m-tuple of values represents the image of this m-tuple by the polymorphism
- For each relation $R \in \Gamma$, and for each permutation of m tuples $\tau_1, \ldots, \tau_m \in R$ we post the constraint R on the image variables

\[
\begin{bmatrix}
1 & X_{11} & 1 & X_{10} & 1 & X_{11} \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]
Given a set of relations Γ:

- CSP which solutions are polymorphisms of Γ
- A variable for each m-tuple of values
 - represents the image of this m-tuple by the polymorphism
- For each relation $R \in \Gamma$, and for each permutation of m tuples $\tau_1, \ldots, \tau_m \in R$ we post the constraint R on the image variables

\[R(x_{11}, x_{10}, x_{11}) \]