COLUMN GENERATION FOR BI-OBJECTIVE VEHICLE PROBLEMS WITH A MIN-MAX OBJECTIVE

B.M. Sarpong¹,² C. Artigues¹ N. Jozefowiez¹,²

1. LAAS-CNRS, Toulouse, France
2. INSA-Toulouse, France

05/09/2013
MULTI-OBJECTIVE INTEGER PROGRAMMING

BI-OBJECTIVE VRP WITH A MIN-MAX OBJECTIVE

APPLICATION TO THE BOMCTP

COMPUTATIONAL RESULTS

CONCLUSIONS
Definition of a Multi-Objective Integer Program

\[
\text{(MOIP)} = \begin{cases}
\min & \ F(x) = (f_1(x), f_2(x), \ldots, f_r(x)) \\
\text{s.t.} & \ x \in \mathcal{X}
\end{cases}
\]

- \(r \geq 2 \) : number of objective functions
- \(F = (f_1, f_2, \ldots, f_r) \) : vector of objective functions
- \(\mathcal{X} \subseteq \mathbb{N}^n \) : feasible set of solutions
- \(\mathcal{Y} = F(\mathcal{X}) \) : feasible set in objective space
- \(x = (x_1, x_2, \ldots, x_n) \in \mathcal{X} \) : variable vector, variables
- \(y = (y_1, y_2, \ldots, y_r) \in \mathcal{Y} \) with \(y_i = f_i(x) \) : vector of objective function values
A solution x^1 dominates another solution x^2 if and only if
$\forall i \in \{1, \ldots, n\}, f_i(x^1) \leq f_i(x^2)$ and $\exists i \in \{1, \ldots, n\}$ such that
$f_i(x^1) < f_i(x^2)$.

A Pareto optimal solution is a solution dominated by no other feasible solution.

The image of a Pareto optimal solution in the objective space is said to be nondominated.
Lower Bound of a MOIP [Villarreal and Karwan, 1981]

A set of points (feasible or not) such that the image of every feasible solution is dominated by at least one of the points.

Upper Bound
A set of mutually nondominated feasible points.

- f_1
- f_2

- image of feasible solution
Lower Bound of a MOIP [Villarreal and Karwan, 1981]

Lower Bound
A set of points (feasible or not) such that the image of every feasible solution is dominated by at least one of the points.

Upper Bound
A set of mutually nondominated feasible points.

Diagram:
- f_1 and f_2 axes
- Ideal point
- Nadir point
- Image of feasible solutions
- Estimate of nondominated region
Lower Bound of a MOIP [Villarreal and Karwan, 1981]

Lower Bound
A set of points (feasible or not) such that the image of every feasible solution is dominated by at least one of the points.

- **image of feasible solution**
- **estimate of nondominated region**
- **member of lower bound**

![Diagram of Lower Bound](image)
Lower Bound of a MOIP [Villarreal and Karwan, 1981]

Lower Bound
A set of points (feasible or not) such that the image of every feasible solution is dominated by at least one of the points.

Upper Bound
A set of mutually nondominated feasible points.
Computing Bound Sets for a BOIP

Lower Bound Set
- Transform the BOIP into single objective by using a scalarization method (weighted sum, ε-constraint, ...).
- Solve relaxations of transformed problem for several values of the parameters in order to generate a set of points satisfying the definition of a lower bound set.

Upper Bound Set
- Generally, obtained through heuristics and metaheuristics.
- The heuristic or metaheuristic need not depend on any particular scalarization method.
Column Generation for a BOVRPMMO

Minimize \(\sum_{k \in \Omega} c_k \theta_k \)

Minimize \(\Gamma_{\text{max}} \)

\[\sum_{k \in \Omega} a_{ik} \theta_k \geq b_i \quad (i \in I) \]

\[\Gamma_{\text{max}} \geq \sigma_k \theta_k \quad (k \in \Omega) \]

\[\theta_k \in \{0, 1\} \quad (k \in \Omega) \]

Assumption

- There is a finite number of possible values for \(\sigma_k \) in a range \([\sigma_{\text{min}}, \sigma_{\text{max}}]\).

- Example: \(\sigma_k \) is an integer.
Minimize
\[\sum_{k \in \Omega} c_k \theta_k \]
Subject to
\[\sum_{k \in \Omega} a_{ik} \theta_k \geq b_i \] \hspace{0.5cm} (i \in I)
\[-\Gamma_{\text{max}} \geq -\varepsilon \]
\[\Gamma_{\text{max}} \geq \sigma_k \theta_k \] \hspace{0.5cm} (k \in \Omega)
\[\theta_k \in \{0, 1\} \] \hspace{0.5cm} (k \in \Omega)

Advantage

- Each column is valid for all values of \(\varepsilon \) and so the subproblem algorithm does not need to keep track of this parameter.

Disadvantage

- Usually need to introduce extra variables and this can negatively affect the quality of a lower bound set.
Reformulation of a BOVRPMMO

Minimize

\[\sum_{k \in \tilde{\Omega}} c_k \theta_k \]

Minimize \(\Gamma_{\text{max}} \)

\[\sum_{k \in \tilde{\Omega}} a_{ik} \theta_k \geq b_i \quad (i \in I) \]

\[\Gamma_{\text{max}} \geq \sigma_k \theta_k \quad (k \in \Omega) \]

\[\theta_k \in \{0, 1\} \quad (k \in \tilde{\Omega}) \]

Idea Used

- \(\Omega \) is extended into a new set of columns \(\tilde{\Omega} \).
- The feasibility of a column \(k \in \tilde{\Omega} \) depends on \(\sigma_k \).
- We define \(\tilde{\Omega}^\varepsilon = \{ k \in \tilde{\Omega} : \sigma_k \leq \varepsilon \} \) when we need solutions satisfying \(\Gamma_{\text{max}} \leq \varepsilon \).
Reformulation of a BOVRPMMO

\[
\begin{align*}
\text{Minimize} & \quad \sum_{k \in \tilde{\Omega}} c_k \theta_k \\
\text{Minimize} & \quad \Gamma_{\text{max}} \\
\sum_{k \in \tilde{\Omega}} a_{ik} \theta_k & \geq b_i & (i \in I) \\
\Gamma_{\text{max}} & \geq \sigma_k \theta_k & (k \in \tilde{\Omega}) \\
\theta_k & \in \{0, 1\} & (k \in \tilde{\Omega})
\end{align*}
\]

Idea Used

- \(\Omega\) is extended into a new set of columns \(\tilde{\Omega}\).
- The feasibility of a column \(k \in \tilde{\Omega}\) depends on \(\sigma_k\).
- We define \(\tilde{\Omega}^\varepsilon = \{k \in \tilde{\Omega} : \sigma_k \leq \varepsilon\}\) when we need solutions satisfying \(\Gamma_{\text{max}} \leq \varepsilon\).
Minimize \[
\sum_{k \in \bar{\Omega}} c_k \theta_k
\]
\[
\sum_{k \in \bar{\Omega}} a_{ik} \theta_k \geq b_i \quad (i \in I)
\]
\[
\theta_k \in \{0, 1\} \quad (k \in \bar{\Omega})
\]

Advantages

- Both the master and the subproblem are single objective problems.
- No weakening of the linear relaxation for a given value of \(\varepsilon\).

Disadvantage

- Need to manage the parameter \(\varepsilon\) in both the master problem and the subproblem.
For any given value of ε, completely solve the linear relaxation of $\text{MP}(\bar{\Omega}^\varepsilon)$ by column generation.
For any given value of ε, completely solve the linear relaxation of $\text{MP}(\bar{\Omega}^\varepsilon)$ by column generation.

\begin{align*}
\max & \quad \varepsilon \\
\min & \quad \varepsilon
\end{align*}
For any given value of ε, completely solve the linear relaxation of $\text{MP}(\Omega^\varepsilon)$ by column generation.
For any given value of ε, completely solve the linear relaxation of $\text{MP}(\tilde{\Omega}^\varepsilon)$ by column generation.
For any given value of ε, completely solve the linear relaxation of $\text{MP}(\bar{\Omega}^{\varepsilon})$ by column generation.
At each column generation iteration in PPS, use heuristics (problem dependent) to search for other columns that are relevant for current value of ε and may also be relevant for other values.

Advantage

- Can cheaply find a large number of columns once the price of a few columns have been paid.
- Tries to take advantage of the reformulation and the similar subproblems associated to the different values of ε.

Disadvantage

- No guarantee that a column found by a heuristic will be relevant for other values of ε apart from the current one.
Find a set of routes on $V' \subseteq V$ with minimum total length and such that the nodes of W are covered by those of V'.

- The number of nodes on each route cannot exceed p.

![Diagram with nodes and edges representing the Multi-Vehicle Covering Tour Problem.

- Green circles: May be visited
- Red squares: MUST be covered
- Blue circle: Depot
- Dotted lines: Vehicle routes
- Black lines: Cover distance

The Multi-Vehicle Covering Tour Problem [Hachicha et al., 2000]
Design of bi-level transportation networks \cite{Current_and_Schilling_1994}.

- **Aim:** Construct a primary route such that all points that are not on it can easily reach it.

The postbox location problem \cite{Labbé_and_Laporte_1986}.

- **Aim:** minimize the cost of a collection route through all post boxes and also ensure that every user is located within a reasonable distance from a post box.

- **Medical services can only be delivered to a subset of villages, but all users must be able to reach a visiting medical team.**
The Bi-Objective MCTP

Problem
Given graph $G = (V \cup W, E)$, design a set of routes on $V' \subseteq V$. $D = (d_{ij})$ is a distance matrix satisfying the triangle inequality.

Objectives
- Minimize the total length of the set of routes.
- Minimize the cover distance induced by the set of routes.

Constraints
- Each route must start and also end at the depot.
- The number of nodes on each route should not exceed p.
THE COVER DISTANCE INDUCED BY A SET OF ROUTES
The Cover Distance Induced by a Set of Routes
THE COVER DISTANCE INDUCED BY A SET OF ROUTES
THE COVER DISTANCE INDUCED BY A SET OF ROUTES
The Cover Distance Induced by a Set of Routes
A “standard” ε-Constraint Formulation for the BOMCTP

Minimize \[\sum_{k \in \Omega} c_k \theta_k \] (1)

\[\sum_{v_i \in V \setminus \{v_0\}} z_{ij} \geq 1 \quad (w_j \in W) \] (2)

\[\sum_{k \in \Omega} a_{ik} \theta_k - z_{ij} \geq 0 \quad (v_i \in V \setminus \{v_0\}, w_j \in W) \] (3)

\[\Gamma_{\text{max}} - d_{ij}z_{ij} \geq 0 \quad (v_i \in V \setminus \{v_0\}, w_j \in W) \] (4)

\[-\Gamma_{\text{max}} \geq -\varepsilon \] (5)

\[\Gamma_{\text{max}} \geq 0 \] (6)

\[z_{ij} \in \{0, 1\} \quad (v_i \in V \setminus \{v_0\}, w_j \in W) \] (7)

\[\theta_k \in \{0, 1\} \quad (k \in \Omega) \] (8)
 reformulation: master problem

Minimize \[\sum_{k \in \bar{\Omega}} c_k \theta_k \]

subject to: \[\sum_{k \in \bar{\Omega}} a_{jk} \theta_k \geq 1 \quad (w_j \in W) \]

\[\theta_k \in \{0, 1\} \quad (k \in \bar{\Omega}) \]

- A column \(k \in \bar{\Omega} \) is defined as a route \(R_k \) together with a subset \(\Psi_k \subseteq W \) of nodes it may cover.

- \(\sigma_k : \max\{d_{ij} : v_i \in R_k \text{ and } w_j \in \Psi_k\} \).

- \(a_{jk} : 1 \text{ if } w_j \in \Psi_k, \text{ and } 0 \text{ otherwise.} \)
Reformulation: Subproblem corresponding to ε

$$S(\varepsilon) = \min_{k \in \Omega \setminus \Omega_1} \left\{ c_k - \sum_{w_j \in W} a_{jk} \pi_j : \sigma_k \leq \varepsilon \right\}$$

- $S(\varepsilon)$ is associated with a dual vector π, and the value of ε for which π was computed.
- An elementary shortest path problem with resource constraints.
- Ψ_k may only contain nodes of the set
 \[\{ w_j \in W : \exists v_i \in R_k \text{ with } d_{ij} \leq \varepsilon \} . \]
- Need to modify dominance rule between labels.
IPPS Heuristic for the BOMCTP
IPPS Heuristic for the BOMCTP
Quality Measures \cite{Ehrgott2007}

$$
\mu_1 := \frac{d(L, U)}{\|y_{\text{max}} - y_{\text{min}}\|_2} \\
\mu_2 := \frac{A_L - A_U}{A_L}
$$
Instances

- $|V| + |W|$ random points in the $[0, 100] \times [0, 100]$ square.
- Depot is restricted to lie in the $[25, 75] \times [25, 75]$ square.
- Set V taken as first $|V|$ points; Set W takes remaining points.

Algorithms and coding

- All codes written in C/C++.
- RMP solved with CPLEX 12.4.
- Subproblem solved by DSSR algorithm [Boland et al. (2006), Righini and Salani (2008)].

Computer specifications

- Intel Core 2 Duo, 2.93 GHz, 2 GB RAM.
Comparison of Approaches and Search Strategies

| p | $|V|$ | $|W|$ | Standard $\mu_1\%$ | $\mu_2\%$ | PPS $\mu_1\%$ | $\mu_2\%$ | IPPS $\mu_1\%$ | $\mu_2\%$ |
|-----|-----|-----|------------------|---------|-------------|---------|----------------|---------|
| 5 | 40 | 80 | 6.41 | 23.22 | 1.07 | 7.69 | 1.01 | 6.09 |
| 5 | 40 | 120 | 4.67 | 23.35 | 0.91 | 11.92 | 0.92 | 10.33 |
| 5 | 50 | 100 | 4.74 | 21.94 | 0.70 | 9.48 | 0.68 | 7.85 |
| 5 | 50 | 150 | 4.33 | 26.44 | 1.20 | 16.67 | 1.20 | 15.41 |
| 8 | 40 | 80 | 8.38 | 25.86 | 0.32 | 3.04 | 0.38 | 2.46 |
| 8 | 40 | 120 | 6.48 | 21.70 | 0.40 | 4.50 | 0.40 | 3.70 |
| 8 | 50 | 100 | 6.13 | 21.83 | 0.32 | 3.83 | 0.31 | 3.65 |
| 8 | 50 | 150 | 5.00 | 18.70 | 0.31 | 4.30 | 0.36 | 3.66 |

Table: Quality of Bound Sets
COMPARISON OF APPROACHES AND SEARCH STRATEGIES

Figure: Computational Time (cpu seconds)
Comparison of Approaches and Search Strategies

Figure: Number of DSSR Iterations
Conclusions

▶ Methods and models for computing lower bounds are needed in multi-objective optimization.

▶ Application of column generation to multi-objective problems seems to have been overlooked.

▶ Column generation techniques and strategies for single objective problems can easily be extended to bi-objective problems.

▶ Study column generation approach based on other scalarization methods (eg. weighted sum method)
COLUMN GENERATION FOR BI-OBJECTIVE VEHICLE PROBLEMS WITH A MIN-MAX OBJECTIVE

B.M. Sarpong1,2 C. Artigues1 N. Jozefowiez1,2

1. LAAS-CNRS, Toulouse, France
2. INSA-Toulouse, France

05/09/2013
| p | $|V|$ | $|W|$ | Standard | | PPS | | IPPS |
|-----|-----|-----|---------|-----|-------|-------|
| | | | time | dsrr| time | dsrr | time | dsrr |
| 5 | 40 | 80 | 28 | 137 | 50 | 228 | 41 | 155 |
| 5 | 40 | 120 | 39 | 163 | 127 | 330 | 94 | 201 |
| 5 | 50 | 100 | 69 | 197 | 206 | 390 | 154 | 226 |
| 5 | 50 | 150 | 42 | 150 | 393 | 486 | 287 | 247 |
| 8 | 40 | 80 | 61 | 217 | 113 | 302 | 104 | 218 |
| 8 | 40 | 120 | 132 | 299 | 511 | 481 | 504 | 293 |
| 8 | 50 | 100 | 281 | 326 | 1344 | 522 | 1013 | 335 |
| 8 | 50 | 150 | 333 | 380 | 1525 | 672 | 1186 | 384 |

Table: Computational Time (cpu seconds)
Figure: Computational Time (cpu seconds)
Figure: Number of DSSR Iterations