Combining forces to solve Combinatorial Problems, a preliminary approach

Mohamed Siala, Emmanuel Hebrard, and Christian Artigues

Tarbes, France
Outline

Context

Background

SAT-Solving with Global Constraints

The AtMostSeqCard Constraint

Experiments

Conclusion & Future work
Combinatorial Problems

Context

- Finite domain variables
- a fixed number of constraints over these variables
Combinatorial Problems

Context

- Finite domain variables
- A fixed number of constraints over these variables
- Is there a solution satisfying these constraints?
Combinatorial Problems

Context
- Finite domain variables
- A fixed number of constraints over these variables
- Is there a solution satisfying these constraints?

Combinatorial Problems
- The size of the search tree is exponential!
- There is no known algorithm for solving them in polynomial time
- NP-Complete/NP-Hard Problems
A constraint satisfaction problem (CSP) is a triplet $P = (\mathcal{X}, \mathcal{D}, \mathcal{C})$ where

- \mathcal{X} is a set of variables.
- \mathcal{D} is the related sets of values.
- \mathcal{C} is a set of constraints.

A solution of a CSP is an assignment w satisfying all the constraints.
A constraint satisfaction problem (CSP) is a triplet $P = (\mathcal{X}, \mathcal{D}, \mathcal{C})$ where

- \mathcal{X} is a set of variables.
- \mathcal{D} is the related sets of values.
- \mathcal{C} is a set of constraints.

A solution of a CSP is an assignment w satisfying all the constraints.

Example

- $X = \langle x, y \rangle$
- $D = \langle \{1, 2, 3\}, \{4, 5\} \rangle$
- $C_1 = \{x \text{ is even}\}$
- $C_2 = \{x + y = 6\}$
A propagator (or filtering algorithm) aims to remove some values that are inconsistent.

Correctness & Checking

Figure: Propagation impact
Global constraints

- A global constraint is constraint over n variables.
- A global constraint captures a sub-problem.
- A global constraint can be used to solve different problems.
- A global constraint \leftrightarrow specific propagator.

Propagation & Global Constraints?

<table>
<thead>
<tr>
<th>Decomposition</th>
<th>Global Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_1 : X \neq Y; C_2 : Y \neq Z; C_3 : Z \neq X;$</td>
<td>AllDifferent(X, Y, Z)</td>
</tr>
</tbody>
</table>

AllDifferent(X, Y, Z)

$X, Y, Z, D_X = D_Y = D_Z = \{1, 2\}$

<table>
<thead>
<tr>
<th>Decomposition</th>
<th>Global Constraint</th>
</tr>
</thead>
</table>
| Propagate(C_1) :
 $C_1 : X \neq Y$
 $D_X = D_Y \{1, 2\}$
 \rightarrow No propagation!
Propagate(C_2), Propagate(C_3) : No propagation | $D_X = D_Y = D_Z = \{1, 2\}$
\rightarrow Failure! |
Learning in CP

- a, b, c, d integer variables pairwise different.
- $D(a) = \{1, 2, 3, 4\}$, $D(b) = \{1, 2, 3\}$, $D(c) = \{1, 2, 3\}$, $D(d) = \{1, 2, 3\}$
- x_1, \ldots, x_n n variables and C_1, \ldots, C_m m Constraints over these variables
- suppose that we branch on $a, x_1 \ldots x_n, b, c, d$
Learning in CP

- \(a, b, c, d \) integer variables pairwise different.
- \(D(a) = \{1, 2, 3, 4\}, \ D(b) = \{1, 2, 3\}, \ D(c) = \{1, 2, 3\}, \ D(d) = \{1, 2, 3\} \)
- \(x_1, \ldots x_n \) n variables and \(C_1, \ldots C_m \) m Constraints over these variables
- suppose that we branch on \(a, x_1 \ldots x_n, b, c, d \)

With a standard CP-Solver
Learning in CP

With learning:

- Conflict analyse $\rightarrow [a \leftarrow 3]$ is a no good!
- Backjump to the latest assignment in $[a \leftarrow 3]$
- Learn $[\neg (a=3)]$
Boolean Satisfiability (SAT)

A Sat-Problem
- Boolean variables
- CNF: a set of clauses (i.e. a set of disjunctions over these variables and their negations).
- For instance: \(C \equiv (a \lor b) \land (\neg c \lor d \lor \neg e) \)

Why SAT?
1. There is a community working on SAT-Problems!
2. Modern SAT-Solvers are able to deal with millions of variables and clauses
Suppose now that we want to solve:

\[\phi \equiv ((x + y) = 32) \lor (a > 17) \land ((w^3 + y = 0.53) \lor p_1 \lor \neg p_2) \]
Suppose now that we want to solve:

\[\phi \equiv ((x + y) = 32) \lor (a > 17) \land ((w^3 + y = 0.53) \lor p_1 \lor \neg p_2) \]

⇒ It looks like a CNF but . . .
Suppose now that we want to solve:

\[\phi \equiv ((x + y) = 32) \lor (a > 17)) \land ((w^3 + y = 0.53) \lor p_1 \lor \neg p_2) \]

\[\Rightarrow \text{It looks like a CNF but . . .} \]

\[\Rightarrow \text{Satisfiability} \]
Suppose now that we want to solve:
\[\phi \equiv ((x + y) = 32) \lor (a > 17)) \land ((w^3 + y = 0.53) \lor p_1 \lor \neg p_2) \]
⇒ It looks like a CNF but . . .
⇒ Satisfiability Modulo Theories
Suppose now that we want to solve:
\[\phi \equiv ((x + y) = 32) \lor (a > 17) \land ((w^3 + y = 0.53) \lor p_1 \lor \neg p_2) \]
⇒ It looks like a CNF but . . .
⇒ Satisfiability Modulo Theories
⇒ First order formulas w.r.t some theories
Suppose now that we want to solve:
\[\phi \equiv ((x + y) = 32) \lor (a > 17) \land ((w^3 + y = 0.53) \lor p_1 \lor \neg p_2) \]
⇒ It looks like a CNF but . . .
⇒ Satisfiability Modulo Theories
⇒ First order formulas w.r.t some theories

Lazy SMT

1. Exploiting SAT by abstracting the formula
2. Theory Propagation
3. Theory explanations for conflicts and propagation
Towards a hybrid solver

SAT-Solver → Search → Propagation → Explanations → Conflict Analyse → SAT-Solver
Definition

\[\text{AtMostSeqCard}(u, q, d, [x_1, \ldots, x_n]) \iff \]

\[\bigwedge_{i=0}^{n-q} \left(\sum_{l=1}^{q} x_{i+l} \leq u \right) \wedge \left(\sum_{i=1}^{n} x_i = d \right) \]
Definition

\[\text{AtMostSeqCard}(u, q, d, [x_1, \ldots, x_n]) \iff \]

\[\bigwedge_{i=0}^{n-q} (\sum_{l=1}^{q} x_{i+l} \leq u) \land \left(\sum_{i=1}^{n} x_i = d \right) \]

Example \text{AtMostSeqCard}(2, 4, 4, [x_1, \ldots, x_7])

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mohamed SIALA
April 2013
EDSYS Congress
Filtering the Domains

- **Leftmost count from left to right:**
 - $L[i]$
 - $L[n] < ub$
 - $L[n] > ub$
 - $L[n] = ub$

- **Leftmost count from right to left:**
 - $R[i]$
 - $L[i] + R[n - i + 1] \leq ub$
 - $L[i - 1] + R[n - i] < ub$

- **Fail**
- **Nothing to do**

Equations:

- $L[i]$
- $R[i]$
- $D(x_i) = \{0\}$
- $D(x_i) = \{1\}$
Explaining the \texttt{AtMostSeqCard} constraint

Key idea

Let S^* be a sequence defined as $\forall i \in [1, n]$, the domain of x_i in S^* (denoted by $D^*(x_i)$) is defined as follows:

$$D^*(x_i) = \begin{cases}
\{0, 1\}, & \text{if } (D(x_i) = \{0\} \text{ and } \max_i = u) \\
\{0, 1\}, & \text{if } (D(x_i) = \{1\} \text{ and } \max_i \neq u) \\
D(x_i) & \text{otherwise}
\end{cases}$$

Theorem

Let L^ the result of leftmost_max on S^*.
$\forall i \in [1, n], L^*[i] = L[i]$.***
Car-sequencing

Constraints

- Each class c is associated with a demand D_c.
- For each option j, each sub-sequence of size q_j must contain at most u_j cars requiring the option j.
Easy Sat

<table>
<thead>
<tr>
<th></th>
<th># solved</th>
<th># TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>mcp</td>
<td>368 / 368 100%</td>
<td>0.17</td>
</tr>
<tr>
<td>hybrid</td>
<td>368 / 368 100%</td>
<td>0.14</td>
</tr>
<tr>
<td>hybridSwitch</td>
<td>368 / 368 100%</td>
<td>0.21</td>
</tr>
<tr>
<td>DefaultHybrid</td>
<td>368 / 368 100%</td>
<td>0.33</td>
</tr>
<tr>
<td>sate2</td>
<td>368 / 368 100%</td>
<td>3.15</td>
</tr>
<tr>
<td>sate3</td>
<td>368 / 368 100%</td>
<td>3.01</td>
</tr>
</tbody>
</table>

Hard Sat

<table>
<thead>
<tr>
<th></th>
<th># solved</th>
<th># TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>mcp</td>
<td>35 / 35 100%</td>
<td>16.72</td>
</tr>
<tr>
<td>hybrid</td>
<td>34 / 35 97%</td>
<td>3.05</td>
</tr>
<tr>
<td>hybridSwitch</td>
<td>34 / 35 97%</td>
<td>2.66</td>
</tr>
<tr>
<td>DefaultHybrid</td>
<td>16 / 35 45%</td>
<td>287.84</td>
</tr>
<tr>
<td>sate2</td>
<td>28 / 35 80%</td>
<td>289.32</td>
</tr>
<tr>
<td>sate3</td>
<td>31 / 35 88%</td>
<td>60.99</td>
</tr>
</tbody>
</table>
Unsat instances

<table>
<thead>
<tr>
<th></th>
<th># solved</th>
<th># TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>mcp</td>
<td>23 / 136 16%</td>
<td>300.55</td>
</tr>
<tr>
<td>hybrid</td>
<td>23 / 136 16%</td>
<td>300.55</td>
</tr>
<tr>
<td>hybridSwitch</td>
<td>36 / 136 26%</td>
<td>351.86</td>
</tr>
<tr>
<td>DefaultHybrid</td>
<td>35 / 136 25%</td>
<td>225.95</td>
</tr>
<tr>
<td>sate2</td>
<td>85 / 136 62%</td>
<td>92.45</td>
</tr>
<tr>
<td>sate3</td>
<td>66 / 136 48%</td>
<td>186.79</td>
</tr>
</tbody>
</table>
Current Contributions

- A linear time propagator for the \texttt{AtMostSeqCard} constraint
- Explaining the \texttt{AtMostSeqCard} constraint
- Getting started with the Hybrid solver

Future research

- Hybridisation & Hybridisation again . . .
- Treating other problems (scheduling) in a SAT-CP context
- MiniZinc Challenge with a hybrid Solver
- Incremental SAT-Encoding for Finite Domain variables
- . . .
Thank you!

Questions?