THE BI-OBJECTIVE MULTI-VEHICLE COVERING TOUR PROBLEM (BOMCTP): FORMULATION AND LOWER-BOUND COMPUTATION

B.M. SARPONG C. ARTIGUES N. JOZEFOWIEZ

LAAS-CNRS

13/04/2012
1. Introduction

2. Mathematical formulation of the BOMCTP

3. Column generation for a bi-objective integer problem

4. Lower bound for the BOMCTP

5. Conclusions and perspectives
Find a minimal-length tour on \(V' \subseteq V \) such that the nodes of \(W \) are covered by those of \(V' \).
Find a set of at most m tours on $V' \subseteq V$, having minimum total length and such that the nodes of W are covered by those of V'.

- The length of each route cannot exceed a preset value p.
- The number of vertices on each route cannot exceed a preset value q.

- May be visited
- MUST be visited : T
- MUST be covered : W
- Vehicle routes
- Cover distance
Problem

Given a graph $G = (V \cup W, E)$ with $T \subseteq V$, design a set of vehicle routes on $V' \subseteq V$.

Objectives

- Minimize the total length of the set of routes.
- Minimize the cover distance induced by the set of routes.

Constraints

- Each vertex of T must belong to a vehicle route.
- Each vertex of W must be covered.
- The length of each route cannot exceed a preset value p.
- The number of vertices on each route cannot exceed a preset value q.
A set-covering model for the BOMCTP

Variables

- Ω : set of all feasible routes
- $r_k \in \Omega$: feasible route k
- c_k : cost of route r_k
- θ_k : 1 if route r_k is selected in solution and 0 otherwise
- z_{ij} : 1 if vertex $v_j \in V$ is used to cover vertex $w_i \in W$ and 0 otherwise
- a_{ik} : 1 if r_k uses vertex $v_i \in V$ and 0 otherwise
- Cov_{max} : cover distance induced by a set of routes

Objective functions

$$\text{minimize} \sum_{r_k \in \Omega} c_k \theta_k$$

$$\text{minimize} \ Cov_{\text{max}}$$
A set-covering model for the BOMCTP

Constraints

\[- z_{ij} + \sum_{r_k \in \Omega} a_{jk} \theta_k \geq 0 \quad (w_i \in W, v_j \in V)\]

\[\sum_{r_k \in \Omega} a_{jk} \theta_k \geq 1 \quad (v_j \in T)\]

\[\text{Cov}_{\max} - c_{ij} z_{ij} \geq 0 \quad (w_i \in W, v_j \in V)\]

\[\sum_{v_j \in V} z_{ij} \geq 1 \quad (w_i \in W)\]

\[\text{Cov}_{\max} \geq 0\]

\[z_{ij} \in \{0, 1\} \quad (w_i \in W, v_j \in V)\]

\[\theta_k \in \{0, 1\} \quad (r_k \in \Omega)\]
Lower bound of a MOIP [Villarreal and Karwan, 1981]
Lower bound of a MOIP [Villarreal and Karwan, 1981]
Lower bound of a MOIP [Villarreal and Karwan, 1981]
Lower bound of a MOIP [Villarreal and Karwan, 1981]
Lower bound of a MOIP [Villarreal and Karwan, 1981]
Lower bound of a MOIP [Villarreal and Karwan, 1981]
Lower bound of a MOIP [Villarreal and Karwan, 1981]
Problem

minimize \((c_1x, c_2x)\)

\[Ax \geq b\]

\[x \geq 0 \text{ and integer}\]

Procedure

- Transform bi-objective problem into a single-objective one by means of \(\varepsilon\)-constraint scalarization.
- Solve the linear relaxation of the problem obtained for different values of \(\varepsilon\) by means of column generation.
Master Problem

minimize \(c_1 x \)

\[Ax \geq b \]
\[-c_2 x \geq -\varepsilon \]
\[x \geq 0 \]

Dual

maximize \(by_1 - \varepsilon y_2 \)

\[Ay_1 - c_2 y_2 \leq c_1 \]
\[y_1, y_2 \geq 0 \]
Approach 1: point-by-point search
Approach 1: point-by-point search
APPROACH 1: POINT-BY-POINT SEARCH
APPRAOC 1: POINT-BY-POINT SEARCH
APPROACH 1: POINT-BY-POINT SEARCH
APPROACH 1: POINT-BY-POINT SEARCH
APPROACH 1: POINT-BY-POINT SEARCH
APPENDIX 1: point-by-point search
APPROACH 1: POINT-BY-POINT SEARCH
Approach 1: Point-by-Point Search

- f_2
- f_1
- ε_0
- ε_1
- ε_2
APPROACH 1: POINT-BY-POINT SEARCH

\[f_2 \]
\[f_1 \]
\[\varepsilon_0 \]
\[\varepsilon_1 \]
\[\varepsilon_2 \]
\[\varepsilon_{k-1} \]
Approach 1: point-by-point search
Approach 1: point-by-point search
Approach 2: Parallel Search 1
Approach 2: parallel search

\[f_2 \]
\[f_1 \]
\[\varepsilon_0 \]
\[\varepsilon_1 \]
\[\varepsilon_2 \]
\[\varepsilon_3 \]
\[\varepsilon_{k-1} \]
\[\varepsilon_k \]

- Generate \(\frac{m}{k} \) columns for RMP
Approach 2: parallel search 1
APPROACH 2: PARALLEL SEARCH 1

\[f_2 \]
\[f_1 \]
\[\varepsilon_0 \]
\[\varepsilon_k \]
Approach 2: Parallel Search 1
Approach 2: parallel search 1
Approach 2: parallel search

\[f_2 \]
\[f_1 \]
\[\varepsilon_0 \]
\[\varepsilon_k \]
\[\varepsilon_{k-1} \]
\[\varepsilon_2 \]
\[\varepsilon_1 \]
\[\varepsilon_3 \]
\[1 \]
\[1 \]
\[1 \]
\[1 \]
Approach 3: parallel search 2
Approach 3: parallel search 2

\[f_2 \]

\[f_1 \]

\[\varepsilon_0 \]

generate m columns for RMP
Approach 3: parallel search 2
Approach 3: parallel search 2
APPRAOCH 3: PARALLEL SEARCH 2

\[f_2 \]

\[f_1 \]

\[\varepsilon_0 \]

\[\varepsilon_1 \]

Generate \(m \) columns for RMP
Approach 3: parallel search 2

![Graph showing f1 and f2 axes with points ε0 and ε1]
Approach 3: parallel search 2

\[f_2 \]
\[f_1 \]
\[\varepsilon_0 \]
\[\varepsilon_1 \]
\[\varepsilon_2 \]
Approach 3: parallel search 2

generate m columns for RMP
Approach 3: parallel search 2
Approach 3: parallel search 2
The Restricted Master Problem (RMP)

minimize \(\sum_{r_k \in \Omega_1} c_k \theta_k \)

Constraints

\[-z_{ij} + \sum_{r_k \in \Omega_1} a_{jk} \theta_k \geq 0 \quad (w_i \in W, v_j \in V)\]

\[\sum_{r_k \in \Omega_1} a_{jk} \theta_k \geq 1 \quad (v_j \in T)\]

\[\text{Cov}_{\text{max}} - c_{ij}z_{ij} \geq 0 \quad (w_i \in W, v_j \in V)\]

\[\sum_{v_j \in V} z_{ij} \geq 1 \quad (w_i \in W)\]

\[-\text{Cov}_{\text{max}} \geq -\varepsilon\]
The Restricted Master Problem (RMP)

\[
\text{minimize } \sum_{r_k \in \Omega_1} c_k \theta_k
\]

Constraints

\[-z_{ij} + \sum_{r_k \in \Omega_1} a_{jk} \theta_k \geq 0 \quad (w_i \in W, v_j \in V)\]

\[\sum_{r_k \in \Omega_1} a_{jk} \theta_k \geq 1 \quad (v_j \in T)\]

\[C_{ov_{\text{max}}} - c_{ij} z_{ij} \geq 0 \quad (w_i \in W, v_j \in V)\]

\[\sum_{v_j \in V} z_{ij} \geq 1 \quad (w_i \in W)\]

\[-C_{ov_{\text{max}}} \geq -\epsilon\]
Dual of RMP

maximize \(- \varepsilon \lambda + \sum_{w_i \in W} \beta_i + \sum_{v_j \in T} \varphi_j\)

subject to:

\[
\sum_{w_i \in W} a_{jk} \alpha_{ij} + \sum_{v_j \in T} a_{jk} \varphi_j \leq c_k \quad (r_k \in \Omega_1)
\]

\[-\lambda + \sum_{w_i \in W} \sum_{v_j \in V} \gamma_{ij} \leq 0
\]

\[-c_{ij} \gamma_{ij} + \beta_i - \alpha_{ij} \leq 0 \quad (w_i \in W, v_j \in V)\]
Definition of sub-problem

Find routes such that \(c_k - \sum_{w_i \in W} \sum_{v_j \in V} a_{jk} \alpha_{ij} - \sum_{v_j \in T} a_{jk} \varphi_j < 0. \)

- Let \(\alpha^*_{hj} = \alpha_{hj} \) if \(v_j \in V, w_h \in W \) and 0 otherwise.
- Let \(\varphi^*_j = \varphi_j \) if \(v_j \in T \) and 0 otherwise.
- Let \(A \) be the set of arcs formed between two nodes of \(V \).
- Let \(x_{ijk} = 1 \) if route \(r_k \) uses arc \((v_i, v_j) \) and 0 otherwise.

Note: \(c_k = \sum_{(v_i, v_j) \in A} x_{ijk} c_{ij} \) and \(a_{jk} = \sum_{v_i \in V | (v_i, v_j) \in A} x_{ijk} \)

So \(\sum_{(v_i, v_j) \in A} c_{ij} x_{ijk} - \sum_{(v_i, v_j) \in A} \sum_{v_h \in W} \alpha^*_{hj} x_{ijk} - \sum_{(v_i, v_j) \in A} \varphi^*_j x_{ijk} < 0. \)
Definition of sub-problem

\[
\sum_{(v_i, v_j) \in A} \left(c_{ij} - \varphi_j^* - \sum_{v_h \in W} \alpha_{hj}^* \right) x_{ijk} < 0.
\]

Sub-problem

Find elementary paths from the depot to the depot with a negative cost, satisfying the constraints of length and maximum number of vertices on a path. Costs are set to

\[
c_{ij} - \varphi_j^* - \sum_{v_h \in W} \alpha_{hj}^*.
\]

- An elementary shortest path problem with resource constraints
- Solved by the Decremental State Space Relaxation (DSSR) algorithm [Righini and Salani, 2008].
Computational results

- **Instances:**
 - 120 random points generated in the \([0, 100] \times [0, 100]\) square
 - Set \(V\) taken as first \(|V|\) points; \(W\) taken as remaining points
- **RMP coded in C++ and solved with CPLEX 12.2**
- **Computer:** Intel Core 2 Duo, 2.93 GHz, 2 GB RAM

Table: Averages over 10 random instances for \(|T| = 1, \text{ and } q = +\infty\).

\(V	\)	\(p\)	Point-by-point	Parallel 1	Parallel 2				
		time (sec)	Nb. cols Gen	Nb. solved master	time (sec)	Nb. cols Gen	Nb. solved master	time (sec)	Nb. cols Gen	Nb. solved master
40	6	5.93	16.7	34.5	46.41	18.7	917.8	4.35	16.8	35.0
	8	11.76	18.0	34.6	48.61	20.1	925.5	5.49	18.3	35.1
	12	25.01	20.7	34.9	57.21	23.3	947.0	7.12	20.6	35.4
50	6	10.94	18.2	38.9	60.87	20.5	1099.7	8.19	22.1	40.6
	8	22.01	19.6	38.4	64.74	24.0	1115.2	8.99	19.7	38.9
	12	41.74	22.1	37.1	75.85	26.9	1107.8	11.93	22.6	37.5
60	6	19.13	19.9	42.7	40.22	20.9	1017.4	9.45	20.4	43.1
	8	44.56	19.3	42.3	52.78	22.5	1240.1	14.02	21.1	43.4
	12	128.98	23.4	42.6	68.66	26.9	1258.1	22.55	25.8	44.0
Conclusions and perspectives

Conclusions

- Possible to have several (and efficient) ways of applying column generation to bi-objective integer problems.
- Model for BOMCTP has a weak linear relaxation.

Work in progress

- Investigate other intelligent ways of generating columns for a bi-objective integer problem.
- Test developed approaches on different problems (including another model for the BOMCTP with a stronger linear relaxation).
- Efficiently solve the BOMCTP by a multi-objective branch-and-price algorithm.
THANK YOU FOR YOUR ATTENTION.