A FIACRE V3.0 Primer

Bernard Berthomieu™, Silvano dal Zilio®, Francois Vernadat™

March 4, 2020

* LAAS-CNRS Université de Toulouse
7, avenue du Colonel Roche, 31077 Toulouse Cedex, France
E-mail: FirstName.LastName®@laas.fr

1 Introduction

FIACRE [1] stands for Format Intermédiaire pour les Architectures de Composants Répartis Em-
barqués (Intermediate Format for the Architectures of Embedded Distributed Components). It is
a formal intermediate model to represent both the behavioural and timing aspects of systems —in
particular embedded and distributed systems— for formal verification and simulation purposes.

This document complements the formal description of FIACRE in [2] and subsequent revisions.
It introduces the features of the language from a user point of view though a number of examples.
For technical details, the reader is referred to the formal description.

FIACRE embeds the following notions:

e Processes describe the behaviour of sequential components. A process is defined by a set of
control states, each associated with a piece of program built from deterministic constructs
available in classical programming languages (assignments, if-then-else conditionals, while
loops, and sequential compositions), nondeterministic constructs (nondeterministic choice
and nondeterministic assignments), communication events on ports, and jumps to next state.

e Components describe the composition of processes, possibly in a hierarchical manner. A com-
ponent is defined as a parallel composition of components and/or processes communicating
through ports and shared variables. The notion of component also allows to restrict the ac-
cess mode and visibility of shared variables and ports, to associate timing constraints with
communications, and to define priority between communication events.

The next sections describe the different layers of FIACRE: types and expressions in Section 2,
functions in Section 3, processes in Section 4 and components in Section 5.

2 Types and expressions

2.1 Boolean expressions

FIACRE supports a boolean type bool, with:
e constants true and false;
e primitive operators: not, or, and, =>;
e equality = and unequality <> functions;
e conditional expressions _: _7_.

Operators or, and and => are evaluated eargerly: their result is computed from the result of
evaluation of their arguments:

aorb

a and b

In contrast, the arguments of conditional expressions are evaluated on demand. Assuming
expressions a and b are defined, the above expressions are equivalent to:

a:true?b

a:b?false

All FIACRE types supports equality, defined structurally as equality of their contents. Both
arguments of the equality and unequality functions must have same type.

2.2 Numeric expressions

The numeric types of FIACRE include:
e the type int of all integers;
e the type nat of nonnegative integers;
e for each closed integer interval [from,to|, the type from..to of all integers in the interval.

Numeric constants are overloaded at all numeric types including them. E.g. constant 4 has
types int, nat, and all interval types from..to such that from <4 < to.

All numeric types support the usual arithmetic operators: negation —, addition +, subtraction
—, multiplication x, division /, modulo %, with their standard meanings, and a unary coercion
operator written $. All numeric primitives (except the coercion operator $) are “homogeneous”:
their argument(s) and result have the same (numeric) type.

Their behavior may depend on the type choosen, however: not all arguments may be legal when
a primitive is used at some particular types. For instance, the substraction primitive over int values
is total, but it is only partial over nat values; in this case, it has type nat * nat — nat, implying
that it admits any values of type nat as arguments, but it is undefined if its first argument is smaller
than the second. In practice, invalid argument applications will fail dynamically (an exception will
be raised and an error message printed).

The unary coercion operator is overloaded at all types ty — ty’ where ty and ty’. It is defined as
the identity function when its argument belongs to its result type, otherwise it raises an exception.

2.3 Naming types, Type abbreviations

Types can be given names using type declarations, as follows:
type byte is 0..7

If expressions a and b have equal types, then they can be used in the same contexts. The
meaning of FIACRE types is based on their structure rather than on their names: type names are
abbreviations standing for the type they are bound to; two types are equal if they are identical
after recursively replacing the abbreviations they refer to their bound types.

2.4 Naming values, Constant declarations

Values can be declared at toplevel using const declarations. The declared identifiers must be given
a type and a value:

const length : nat is 4
const width : nat is 7

const area : nat is length * width
Constants expressions can also appear in types, everywhere expressions are expected:

const count : nat is 8

type site is 0..count>0:count-170

2.5 Records

Records, or tagged-products, encapsulate several values of possibly different types into a single
value, each constituting a “field” of the record.

type item is record weight : int, height : nat, length : nat end
Records can be built using record expressions:

const il : item is {weight=3, height=12, length=5}
And their components extracted using the dot notation:

const h : nat is item.height;

Naming record types is not mandatory. Equality on records is defined structurally: two records
are equal if they have the same fields and, at each field, the values encapsulated are equal. The
order in which fields occur in records is irrelevant.

2.6 Enumerations and Unions

Enumerations and unions are provided by a single tagged-union type union:
The first example defines a type by enumerating its elements, which all are constants:

type color is union red | green | blue end

The next example declares three constructors encapsulating respectively an integer, a nonneg-
ative integer or a byte. Only a single value can be encapsulated by a union constructor, but that
value can be of any type (including records).

type number is union INT of int | NAT of nat | BYTE of byte end;
const n : number is NAT(4)

Of course, a union type may declare both constant values and constructors in the same decla-
ration, as in the following “option” type:

type option is union None | Some of int end;

The intended application domain of FIACRE (real time systems) precludes recursive data struc-
tures like lists of trees, hence union types cannot be defined recursively. Unions support equality,
with the obvious meaning. There are no expressions extracting the contents of a union construction
but a specific case statement is provided for this, described in Section 4.9.

2.7 Arrays

Arrays encapsulate a given number of components of same type into a single value; the components
can be of any type. For instance, integer vectors and square matrices of size 4 can be defined as
follows:

type vector is array 4 of int

type matrix is array 4 of vector
Arrays can be created from array expressions:

const vl : vector is [1,0,0,0]

const m : matrix is [v1,[0,1,0,0],[0,0,1,0],[0,0,0,1]1]
And their components accessed using the index notation:
const m23 : nat is m[2] [3];

The indices of an array declared of size n have type 0..n-1. Two arrays are equal if they have
the same size and, at each index, they hold equal components.

2.8 Queues

Bounded queues can be represented by arrays but as they occur frequently in the application
domain of FIACRE, a primitive queue type is provided. The queue type allows one to implement
a number of “dynamic” data structures of bounded size like bounded stacks or lists of bounded
length.

type fifo is queue 8 of number

Queues can be created from queue expressions. E.g. the following declarations create an empty
queue q0 and a queue g2 holding two numbers, respectively.

const q0 : fifo is {|I}
const g2 : fifo is {|INT(4),NAT(2) |}

A number of primitives operate on queues:

e empty q (resp. full q) returns true if queue q is empty (resp. full);

e enqueue(q,e) (resp. append(q,e)) return a queue equal to q with element e added at the
back (resp. at the front);

e first(q) returns the front element of q, dequeue(q) returns a queue equal to q without its
front element.

Note that all these primitive are functional: all leave their argument(s) unchanged and return
new queues or components. These functions are partially defined: first or dequeue cannot be
applied to an empty queue, nor append or enqueue to a full queue.

const g3 : fifo is enqueue(enqueue(enqueue({||},BYTE(4)) ,NAT(5)),INT(-2))
const f : number is empty(q3) : INT(0) ? first(qg3)

Two queues are equal if they have the same size and they hold equal components at the same
positions.

2.9 Typing of expressions, subtyping

Since numeric expressions can have several types, so is the case of FIACRE expressions, in general.
For instance, if expressions e and f are numeric and have all types in set £ and F, respectively, then
the expression {fst=e, snd=f} has all types record fst:tyl, snd:ty2 end,in which (ty1,ty2)
e ExF.

Numeric types are organized into a subtyping relation. Intuitively, ty < ty’ means that type ty/
contains all elements of type ty. That relation on numeric types is extended to a relation on FIACRE
types in the natural covariant way (the formal treatment is found in [2]). Note that FIACRE only
admits “depth subtyping”; record types with different sets of fields, or arrays of different sizes, are
unrelated by subtyping (“width subtyping” is not supported).

Due to subtyping, FIACRE functions in isolation may be used at several types, in general. But
since their behavior may differ on the type chosen, each occurrence of a primitive in a FIACRE
program will be assigned a single type: The largest type permitted by the surrounding context.

3 Functions

Fiacre V3 supports functions, either native (defined in Fiacre) or extern (defined in C with their
profile declared in Fiacre).

3.1 Native functions

Functions, whether extern or native, are evaluated applicatively.

As an example, here is the definition of a reorder function operating on queues of messages.
The function reorders the content of the queue so as urgent messages appear first, urgent messages
being those packed with constructor p2.

type msg is p1 | p2 of int | p3 of 0..4 end

function urgent (m : msg) : bool is
begin
case m of
p2 any -> return true
| any -> return false
end
end

type mbuff is queue 7 of msg

function reorder (q: mbuff) : mbuff is
var u: mbuff := ||, n: mbuff := ||, h: msg
begin

while not (empty q) do
h := first q;
q := dequeue q;
if urgent h then
u := enqueue (u,h)
else
n := enqueue (n,h)
end
end;
while not (empty n) do

u := enqueue (u,first n);
n := dequeue n

end;

return u

end

The header specifies a type for each parameter, and a type for the result. Fiacre functions
do not allow side-effects (no shared variables as arguments). If the body resumes to a return
statement then the enclosing begin and end may be omitted.

Function bodies make use of standard statements (if-then-else, while-do, sequence, assigne-
ments), and a case statement for extracting the contents of union values. Control must reach a
return statement. Conversely to processes (in the next section), no function statement is blocking
(e.g. a case statement (see Section 4.9) in which no match is possible makes the function call fail
with a Match error).

Fiacre functions may be recursive. The following is a recursive variant of the above function. It
takes an extra argument accumulating its result. The calls rec_reorder(q,{||}) and reorder(q)
return the same queue.

function rec_reorder (q: mbuff, n: mbuff) : mbuff is
begin
if empty q then
return n
elsif urgent (first q) then
return append (rec_reorder (dequeue g, n), first q)
else
return rec_reorder (dequeue q, enqueue (n,first q))
end
end

3.2 Extern functions

Finally, functions may be defined externally, in language C if using the frac compiler, rather than
in Fiacre. This solution should be reserved to functions that cannot be efficiently defined in Fiacre,
for instance because Fiacre lacks a primitive essential for that function (e.g. power).

For the sake of illustration, this is how the above reorder function would appear in Fiacre and
would be implemented in C.

A profile for the function would be declared in Fiacre, as follows. The declaration also associates
a C function (c_reorder) with the Fiacre function (reorder):

extern reorder (mbuff) : mbuff is c_reorder

Assuming the above function appears in a Fiacre specification named app.fecr, compiling app.fer
with frac would build a app.tts folder including app.net, app.c and app.h. app.h is a header file
associating Fiacre types with their C implementations. The C profile to be used for function
c_reorder can be extracted fom file app.c in which it is deflared extern. The implementation of
function c_reorder must appear in a C file compiled together with app.c, and including file app.h:

#include "zc.h"

struct q1 c_reorder (struct ql q) {

struct ql r;
int i, j = 0;
// copy urgent elements from qa into ra
for (i=0; i<q.len; i++) {

if (q.atlil.con == 1) {

r.at[j++] = q.at[i];

}

}

// append non urgent elements of ga to ra
for (i=0; i<q.len; i++) {
if if (q.at[i].con) {
r.at[j++] = q.at[i];
}

}

r.len = q.len;
return r;

4 Processes

4.1 Contents of a process

Processes describe sequential behaviors. A process is defined by a set of control states and a set of
process transitions each expressing a state change by a statement built from deterministic constructs
(assignments, conditionals, loops, and sequential composition), nondeterministic constructs (nonde-
terministic choice and nondeterministic assignments), interaction statements and jump statements.
In addition, processes can be parameterized by values, value locations (shared variable addresses)
and communication ports (Interaction labels).

A distinction must be clearly made between the transitions of a process and those of its under-
lying transition system (its behavior, as expressed by the semantics of FIACRE). A single process

transition may correspond in general with several behavior transitions, according to the execution
path taken in the process transition.

Another important notion related to transition is atomicity: a process transition leads to a
behavior transition only if some execution path of that transition can be taken that holds a jump
(to) statement. Behavior transitions are performed totally or not started at all. If some condition
along some execution path of a process transition is not fullfilled, then that path does not yield a
behavior transition (we say the path blocks, or that it is blocking).

Finally, it is assumed that no computation along any path fails; it could fail because some
arithmetic or other primitives are partially only defined. The outcome of a (dynamic) failure is
unspecified.

4.2 Representing automata

The simplest example of a FIACRE process is an automaton. The following process represents the
automaton depicted on the right side:

process A is
states s1, s2, s3, s4 Q e'

from s1 to s2
from s2 select to s1 [] to s3 end
from s3 select to s1 [] to s4 end

from s4 select to s4 [] to s1 [] to s3 end 9 e

The states must be declared in the header of the process. Then follow the descriptions of process
transitions, at most one per declared state. Each process transition (introduced by the keyword
from) hold a statement that may correspond with several transitions of the automaton. Here, the
statements are simple jump statements to, and nondeterministic choice statements select.

4.3 Labelling transitions

The transitions can be labelled. The purpose of labels is to identify some transitions of a process
for a later synchronization with transitions from other processes. The next example represents the
previous automaton labelled over alphabet {a, b, ¢} as indicated in the picture:

process B [a,b,c:sync] is
states s1, s2, s3, s4
from s1 a; to s2
from s2 select b; to s1 [] c; to s3 end
from s3 to s4
from s4 select a; to s4 [] b; to s1 [] c; to s3 end

10

Labels (interaction labels, or ports, in FIACRE terminology) must appear as parameters of the
process. They are here declared with type sync!, a predefined profile meaning that they are not
used to communicate values. Within transitions, labelling is achieved using “synchronization”
statements (making precise a label) preceding the jump statements.

4.4 Synchronization and Communication

A profile is either the predefined sync profile or a series of types separated by #. Profiles can be
given names using channel declarations.

In addition to synchronization, labels may be used to express communications between pro-
cesses. In that case, they must be declared in the process header with as profiles the type(s) of the
value(s) passed and, optionally, with a input or output attribute restricting the use of that label
in the process. By default, communication labels have both the input and output attributes;
meaning that they can serve both to emit and receive values.

An interaction statement is either:

e A synchronization statement, constituted of a label, e.g. a in the previous example;

e An emission statement, of general shape alel, ..., en, in which ais alabel and theel, ..., ,en
are expressions of the types appearing in the profile declared for label a in the process header;

e A reception statement, of general shape a?pl,...,pn where Q, in which the p1,...,pn are
destination patterns (soon to be described) and Q is an optional predicate that restricts the
values to be received. The patterns must obey the profile declared in the process header for
label a.

As a simple example, the following process reads pairs of integers of type 0..7 on port a
(restricted to input) then sends their product over port b.

channel bytepair is byte # byte

process C [a:nat, b:input bytepair] is
states
var x,y: byte
from sO b7?x,y; to sl
from s1 al!x*y; to sO

The single communication rule: A central rule in FIACRE processes is that at most one
interaction label is found along any execution path of any process transition. E.g. the transition
from sO b?x,y; alx*y; to sO would be illegal.

There are no syntactical restrictions on the use of shared variables in transitions, in particular,
one may read or write shared variable in a transition performing a synchronization or communica-
tion. However, a conservative non-interference check is performed that rejects programs potentially
exhibiting concurrent writes or concurrent read and write on shared variables.

'Replaces none that was used in Fiacre V2; frac still tolerates none however.

11

4.5 Parameterized processes

The transitions of a process can be parameterized from parameters passed as arguments to the
process, as in the next example below, or obtained by communication with another process.

In the following example showing a parameterized automaton using conditional statements:
The automata transitions originating at state s2 are no more nondeterministic but follow from the
value of parameter x, while the set of automata transitions of source s4 depend upon parameter y.

process B [a,b,c:sync] (x:nat,y:bool) is
states s1, s2, s3, s4
from s1 a;to s2
from s2 if x > 4 then to s1 else to s3 end
from s3 to s4
from s4 if y then
select a;to s4 [] b;to s1 [] c;to s3 end
else
b;to s2
end

4.6 Assignements

Processes can have local variables, initialized statically or from the process parameters. Compu-
tations can be carried out with these variables, using assignement statements and various control
structures described in the sequel.

For instance, the following process encodes an automaton that, for any 0 < n < 4, has n
transitions labelled a followed by 2 % n transitions labelled b. In both cases the local variable x is
used as a counter:

process D [a,b:sync] (n:nat) is
states s1, s2

var x:nat := n
from s1 if x > 0 then a; x := x-1; to sl else x:=2*n; to s2 end
from s2 if x > 0 then to b; x := x-1; s2 else x:=n; to s1 end

FIACRE assignements statements support a rich set of capabilities. They can be:

e simple, as above or in: x := e

The destination x is a single variable; the contents e is an expression admitting as type that
of variable z.

There are no type restrictions on assignable variables. In particular, array or records variables
can be assigned.

e multiple, as in: x,y,z := 3,x,y+z

Several destinations are provided, separated by comas. A matching number of contents must
be provided on the right hand side. Assignement of all destinations are simultaneous.

12

e random, as in: x,y := any where x > y

It can be specified using the any contents that a set of destinations is randomly assigned any
value belonging to their types. An optional where clause restricts the permitted values to
those satisfying some predicate. Random assignement is restricted to destinations of numeric
types.

If no candidate contents obeys the predicate in a random assignement with where constraint,
then the assignement blocks, or is blocking: no transition is possible through the execution
path that holds the assignement.

e with complex destinations, as in: al[3].f := 4

Destinations can be particular fields of record variables or particular positions of array vari-
ables. a[3].f := 4, for example, stores integer 4 in field £ of the fourth component of array
a (arrays elements are indexed from 0).

e with matching constraints, as in: u(v(z)),4 := true,x
Destinations can also be constants, or union constructions, like u(v(z)) or 4.

If the destination holds no variable then, obviously, no destination is assigned, but the content
must still match the destination; the assignement simply asserts then a matching constraint.
If some destination holds some variable (as in u(v(z)) or A(b[3].£)), then the content
much match the destination for the constructors surrounding it. If this is the case, then the
destination is assigned the matching value in the contents. Such assignement express then
both a matching constraint on a content and, possibly, an effective assignement. A more
general case construction for achieving such effects will described in Section 4.9.

As for random assignements with where predicates, assignements with matching constraints
such that contents and destination do not match are blocking. Such assignements can be
used to implement “guards” in process transitions: they restrict the possible transitions to
those obeying the where or matching constraints.

4.7 Conditionals, loops, sequences

Contrarilly to assignements with constraints, conditional statements if _ then _ else _ end are
never blocking. If the optional else branch is omitted, then control is passed to the statement
following the conditional.

For convenience, a null statement is provided, which constitutes a “neutral-element” for se-
quences of statements. Dangling else’s are also given a semantics in terms of null. The following
equivalences hold:

s; null = null; s = s
if ¢ then s1 end = if ¢ then s1 else null end

Two constructs are provided for iterative computations: while statements and foreach state-
ments; the later significantly simplifying loop expressions when iteration variables have interval
types. Examples of such constructions include the following in which the while loop computes in
variable £ the factorial of n (assumed initialized) and the foreach loop computes in variable a the
sum of elements of array b:

13

Process P is
states s1, s2,
var n,f,j : int, b : array 8 of int, i : 0..7, a : int

from s1 f:=n; j:=n-1; while j > 0 do f:=f*j; j:=j-1 end;
from s2 a:=0; foreach i do a:=a+b[i] end;

4.8 Shared variables

The process parameters can be passed by value (cf. Section 4.5) or by reference. The variables
passed by reference can be shared among several processes. In process headers, they are distin-
guished from variables passed by value by an ampersand prefix &.

The following process implements a simple busy-waiting mutual exclusion, using a shared
boolean variable called lock in the process. The exact specification of the task is omitted; the
process idles until the lock shared variable is false, then it performs some work (the task) and
releases the lock:

process K (&lock: read write bool) is
states idle, cs, free

from idle if lock then to idle else lock := true; to cs end
from cs /* unspecified task; */ to free
from free lock := false; to idle

Note: When several such processes are run concurrently, the mutual exclusion property follows
from the fact that transitions paths are atomic (executed totally or not at all). An implementation
of the specification should guarantee atomicity of transition paths, and hence implement the first
transition by some test-and-set mechanism rather than a conditional. More elaborated mutual
exclusion mechanisms will be discussed in Sections 5 and 6.

Shared variable arguments can have attributes read and/or write. They have both by default
but if only one is specified, then the usage of the shared variable into the process is restricted
accordingly.

4.9 Case and pattern matching

Case statements allow one to match a value against various patterns and, in case of match, to
assign some variables to the corresponding contents in the value.

case statements have the following general form, in which v is the value to be matched, the
pi are patterns, si is the statement to be executed if v matches pi and any is a special pattern
matched by any values:

case v of pl ->s1 | ... | pn -> sn | any -> sO end

Les us call destination a variable followed by record and /or array subscripts (e.g. y or x[3].£[5]).
A pattern is either a literal value, a union constant, a destination or some construction made
from those and 1-ary union constructors. For instance, if type ty = union A | B of int end

14

has been declared, as well as variables x: int and c: ty, then A, B(5), c, and B(x) are patterns
of type ty. In addition a particular pattern is provided, overloaded at all types, written any (not
to be confused with the random assignement construction).

A value v matches a pattern p if:

e p is any, a variable or a destination;
e p is a literal value or a union constant and v = p;

e p has shape ¢ (p?), in which c is some 1-ary union constructor, v has shape ¢ (v’) and v’
matches p’.

If pattern p includes a destination and value e matches p, then there is a unique subvalue e’ of
e that matches the destination in p; that destination is assigned that unique e’.

The following is a typical example of use of a case statement. If the message received over port
rq is a status, then boolean true is sent over port outl. If that message is packed with the value
constructor, then the value encapsulated is assigned to variable key and the value b[key] is send
over port out2.

type request is union status | value of 0..7 end
process P [inp:request, outl:bool, out2:int] (b:array 8 of int) is
states s1, s2
var key : 0..7, rq : request
from s1 inp?rq; to s2
from s2 case rq of
status -> outl!true
| value(key) -> out2!blkey]
end; to si

The different clauses of a case statement are considered in the order they are written, from first
to last. If no match is found, then the construction is blocking: no transition is possible though
the case statememt.

4.10 Initialization of variables

The variables locally declared in processes can be initialized by three methods:
e Statically in the var declaration, as in:

process P (b:int) is
states ...
var ¢ : array 8 of int := [0,1,2,3,4,5,6,7]
from

e Statically in an initialization statement. That optional statement is introduced by the init
keyword and placed before the first process transition. Initialization statements may not
write shared variables and may not contain interaction labels. Each execution path of the
init statement must contain a to statement.

15

process P (b:int) is
states s0, s1, s2
var d:byte, ¢ : array 8 of int
init foreach d do c[d] := d end;
if b<4 then to s1 else to s2 end
from si1

In absence of init statement, the initial state of the process if the first state for which a
transition is defined. Note that the init statement allows one to parameterized the initial
state.

e Dynamically in some transition, before the first transition that reads it.

4.11 Subtyping

All variables (whether local, argument, shared) and interaction labels are declared of some type.
As seen in Section 2, expressions can have in general several types, though, in any context, they will
be assigned a single one: the largest allowed by the context. This section discusses the subtyping
rules of FIACRE.

A subtyping relation is defined on FIACRE types. Intuitively, we have ty’ < ty if any value
having type ty’ also has type ty. The subtyping relation is formally defined in [2], page 12. In
particular, any interval type is a subtype of int and of any larger interval type, and nat < int.

If ty’ < ty, then an expression of type ty’ can be used everywhere an expression of type ty
is expected. In particular:

e [f variable x has been declared with type ty, then it may be initialized or assigned by any
expression of a smaller or equal type. E.g. the following process is legal:

process P (a: 0..3) is

states s
var x : 0..7 := a, y : nat := a
from s x := a; y := x; to s

Both variable x and y may be initialized with the value of a; x and y can be assigned the
value of a, and and y can be assigned the value of x as well, since 0..3 < 0..7 < nat.

If some variable has declared type ty, then its content is always assumed to have type ty,
even though it could also have some smaller type. Hence the assignement x := y is ill-typed.

e [f the interaction label q has been declared with profile ty, then any value of a smaller or
equal type can be sent over g, but the values received on q may only be stored in variables of
type larger or equal than ty.

By construction, any value computed is ultimately stored at some destination, sent over some
port or appears in some condition. In all cases, a largest acceptable type can be determined from it,
from either the declared type of the assigned variable, the declared type of the port or the generic
type of the primitives involved. From this upper “type-bound” for expressions can be determined
recursively a largest acceptable type for all primitives occurring in the expression.

16

4.12 Time constrained silent transitions, wait, loop statements

wait statements allowed in silent transitions [in general short hand for ...]
loop statement versus to self ... [clock resets]

4.13 Priority constraints within processes

unless clauses in select statements ... [in general short hand for ...]

5 Components

5.1 Purpose and contents

Components describe interactions between processes or components, in a hierarchical manner, and
possibly constrain these interactions with timing and/or priority requirements. Components also
create and initialize shared variables, if any.

As processes, components may be parameterized by interaction labels, value parameters and
shared variables. A component description may include (all optional except the body):

e Local variable declarations: Those variables may be used for computing the arguments passed
to the instances in the body; they may also be shared among instances;

Local port declarations: These create interaction labels, each associated with a profile and
possibly a timing constraint;

Priority declarations over interaction labels;

An initialization statement (init);

A body, which is some composition of process or component instances.

5.2 Instances, Compositions

Instances: An instance is a process or component name, together with the parameters passed
to it, if any. They have the following form in which both argument lists are optional, the 1i are
interaction labels and the ai are arguments either constituted of an expression (for those passed
by value) or of a variable prefixed by & (for passing shared variables by reference):

p [11,...,1n] (al,...,an)
The composition operator: Compositions have the following form, in which the 1seti are lists
of labels (e.g. a,b,c) and the insti are instances or embedded compositions:

par lsetl -> instl || ...|| 1lsetn -> instn end

To ease writing compositions with large label sets, these may be factorized: If 1setO is in-
cluded in all 1seti, then the above composition can also be written as follow, in which 1seti’ =
lseti-1setO:

par lsetO in lsetl’ -> instl || ...|| 1lsetn’ -> instn end

Label sets are optional. If some is empty, then the arrow following it can be omitted.

17

Sorts and the universal label set x: The sort of insti in the above composition is the set of
labels “known” by insti, that is:

e [f insti is an instance p [11,...,1n] (al,...,an), then it is the set of labels among label
parameters [11,...,1n];
e If insti is a composition par instil || ...|| instin end, then it is the union of the

sorts of the instij.

Conventionally, the universal label set, written *, denotes the set of all labels known to the
composition element it precedes, that is its sort. In addition, the two following forms are considered
equivalent:

par * -> instl || ...|| * -> instn end
par * in instl || ...|| instn end

Label sets specify interactions: The label sets in compositions specify the interactions between
the instances or compositions involved in the composition, as follows.

e If no label is specified, as in:
par instl || ...|| instn end

Then the behavior of the composition is simply the interleaving, or shuffle, of the behaviors
of the instances or compositions involved.

e If all label sets are universal, as in:
par * —> instl || ...|| * -> instn end

Then the behavior of the composition is the synchronous product of the behaviors of the
instances or compositions involved: for each i, every labelled path of insti must be syn-
chronous with some identically labelled path from all components instj having that label in
their sort.

From the definition of *, The above notation is equivalent to the following, in which, for each
i, sorti = sort(insti):

par sortl -> instl || ...|| sortn -> instn end
e Otherwise, if label sets are made explicit as in:
par lsetl -> instl || ...|| lsetn -> instn end

Then, every path of insti labelled by some 1 € 1lseti must be synchronous with an iden-
tically labelled path from all components instj such that 1 € lsetj.

Here are two simple example of components. The first creates a lock variable shared by four
instances of the K process ensuring mutually exclusive access found in Section 4.8:

18

component Mutex is
var lock : bool := false
par K (&lock) || K (&lock) || K (&lock) || K (&lock) end

The second component synchronizes two copies of the automaton defined in Section 4.3 on ports
a and b, while leaving all labelled paths open for further synchronizations:

component Sync [a,b,c:sync] is
par a,b -> B [a,b,c] || a,b -> B [a,b,c] end

Graphical representation of compositions 7

5.3 Local variables

Variables may be declared locally in components, using the same notations as in processes except
that their initialization is mandatory. Local variables can be used for computations (e.g. of instance
arguments), or holders for the arguments passed to instances. Initialization can be done in the var
declaration or in an initialization statement. Initialization statements for components are similar
to those used in processes except that they may not contain to.

The variables locally declared in components can be shared among the instances occurring in
the component body; passing a shared variable to an instance requires to give as argument of
the instance the name of the variable prefixed by &. This will only be legal if the corresponding
component or process expects a variable passed by reference at that position.

By construction, a process may not communicate to another the location (address) of a shared
variable, hence the scope of a shared variable is the body of the component in which it is declared.

The use of shared variables is illustrated by the previous Mutex component, together with the
K process in Section 4.8.

5.4 Local interaction labels

Local label declaration create interaction labels, to be passed as “label arguments” to the instances
in the body of the component.

The scope of a label is the body of the component it is declared within. Hence, if a locally
declared label is passed to an instance, then interaction offers are closed on that label. Interactions
in some body component that should remain open should make use of labels appearing as argument
of the component.

As an example, consider the following component C. It pipes two instances of process P. The
two instance communicate via a local port tmp, while ports ii and oo of the component can further
interact:

process P [ii:int,oo0:int] is
states s1, s2
var x : int
from s1 1ii?x; to s2
from s2 oo!x; to sl

19

component C [ii:int,oo0:int] is
port tmp : int
par tmp -> P [ii,tmp] || tmp -> P [tmp,o0] end

5.5 Time constraints

Closed interactions may be assigned a time interval: Intervals are associated with a label and apply
to all interactions using that label. If interval [,] is associated with label p, then, from the instant
at which it was last enabled, any interaction labelled p must wait at least o units of time but may
not be delayed more than 8 units of time. Fiacre does not make precise the exact unit of time, but
it is assumed that all components in a fiacre specification make use of the same unit.

To make the words “last enabled” more precise, we need to define when interactions are conflict-
ing. An interaction is some set of synchronous transitions belonging to different process instances.
With each interaction one can associate the set of source states of the process transitions involved.
Two interactions are in conflict when they share one of these states.

FIACRE interactions are computed as follows:

e Assume state s enables some set of interactions, each with their current time interval. One
interaction among those is choosen and performed;

e Then the interactions enabled at the target state are computed. In this set, those that were
not enabled at state s or were enabled at s but were in conflict with the interaction taken
start with their initial timing constraints; all other preserve their current constraint.

The first example is the same as the previous pipe example except that communications between
subcomponents can be delayed between 2 and 5 units of time, and that they have priority over
input and output events (priorities will be addressed in the next Section):

component C [ii:int,oo:int] is
port tmp : int in [2,5]
priority tmp > oo | ii
par tmp -> P [ii,tmp] || tmp -> P [tmp,oo] end

The next example exhibits two conflicting interactions. In process Q, the actions labelled a and
b are always enabled simultaneously, but cannot be performed simultaneously (processes express
sequential behaviors). This property remains true when these transitions are synchronized with
the action of process R. Hence, performing one of the two possible interactions labelled ¢ in the
component disables then restarts the other interaction.

process Q [a, b:none] is
states s
from s select a [] b end; to s

process R [z:none] is
states s
from s z; to s

component Z is
port ¢ : sync in [1,3]
par ¢ > R [c] || Q [c,c] end

20

5.6 Priority constraints

Component descriptions may include priority declarations between interaction labels. Priority
constraints apply to all interactions in the body of the component, and are inherited in further
compositions. For instance, if the priority relation in the component holds a < b, then any in-
teraction labelled b in the body of the component has priority over any interaction labelled a. If
these interactions are open and further synchronized with others, then the later inherit the priority
constraints of the former.

After compositions are performed, the resulting priority relation (more precisely its transitive
closure) must be a partial order.

A simple illustration of priorities on open interactions was shown in the last C example. The
next C2 component is similar to C except that it pipes two instances of component C rather than
two instances of process P and that it does not make explicit any priority constraint. However,
since C specified oo > ii, the ports in the C2 body inherit constraints oo2 > tmp2 and tmp2 >
1i2 (as well as 002 > ii2, by transitivity of >).

component C2 [ii2:int,002:int] is

port tmp2 : int in [2,5]
par tmp2 -> C [ii2,tmp2] || tmp2 -> C [tmp2,002] end

6 Examples

See http://www.laas.fr/fiacre/documents.php for some example Fiacre specifications.

21

References

[1] Bernard Berthomieu, Jean-Paul Bodeveix, Patrick Farail, Mamoun Filali, Hubert Garavel,
Pierre Gaufillet, Fréderic Lang, and Francois Vernadat. Fiacre: an intermediate language for
model verification in the TOPCASED environment. In J.-C. Laprie, editor, Proceedings of the
4th European Congress on Embedded Real-Time Software ERTS’08 (Toulouse, France), 2008.

[2] Bernard Berthomieu, Jean-Paul Bodeveix, Mamoun Filali, Hubert Garavel, Fréderic Lang, Flo-
rent Peres, Rodrigo Saad, Jan Stoecker, and Frangois Vernadat. The Syntax and Semantics of
Fiacre — Version 2.0. 2007.

22

Appendix: The syntax of FIACRE
A1l. Notations
An expression expr may be one of the following;:
e a keyword, written in bold font (e.g., type, record, etc.)
e a terminal symbol, written between simple quotes (e.g., ’:’, ’(’, etc.)

e a nonterminal symbol, written in teletype font (e.g., type, type_decl, etc.)

e an optional expression, written “[exprg 1”

a choice between two expressions, written “expry | exprs”

the concatenation of two expressions, written “expry expry”

%99

(resp.

the iterative concatenation of zero (resp. one) or more expressions, written “expr
“6{13]?7’4_”)

the iterative concatenation of zero (resp. one) or more expressions, each two successive
occurrences being separated by a given symbol s, written “exprg” (resp. “exprg”)

The star and plus symbols have precedence over concatenation. Parentheses may be used to
group a sequence of expressions when iterative concatenation concerns the whole sequence.

A2. Lexical elements

IDENT ::= any sequence of letters, digits, or ’_’, beginning by a letter
NATURAL ::= any nonempty sequence of digits

INTEGER ::= [’+’|’-’>] NATURAL

DECIMAL ::= NATURAL [’.’ [NATURAL]] | ’.’ NATURAL

Comments: A FIACRE comment is any sequence of characters between the comment brackets
'/* and "*/7 in which comment brackets are properly nested.

Reserved words and characters:

Keywords may not be used as identifiers, these are:

and any append array bool case channel component const dequeue do
else elsif empty end enqueue false first foreach from full if in init int is
loop nat none sync not null of or out par port priority process queue read
record select states then to true type union unless var wait where while
write

The following characters and symbolic words are reserved:

D01 CH) {3 {0 1} = oo . . = < < > <= »
L V2 B I 2 N R R B S Y

23

A3. Types and Channels

type_id ::= IDENT
constr ::= IDENT
field ::= IDENT
type ::=

bool

nat

int

type_id

exp ’..’ exp

|

|

|

|

| 1uﬁon_(constrf [of type])T end [union]
|

|

|

record (field! ’:’ type)T end [record]
array exp of type
queue exp of type

type_decl ::= type type_id is type

channel_id ::= IDENT

channel ::= sync | type; | channel_id
channel_decl ::= channel channel_id is channel

A4. Expressions

unop ::= ’=> | ’+> | ’$’ | not | full | empty | dequeue | first
binop ::= enqueue | append
infixop ::=
or

| and

I) =) | 1> |

| 10 | 1> | 1= | r>=>

I)+) |)

| EROR | 7/) | J%)

Infixes are listed in order of increasing precedence, those in same line have same prece-
dence. All are left associative.

var ::= IDENT
literal ::= INTEGER | true | false
atomexp ::=
literal
| var
| constr
| atomexp [’ exp ’]’
| atomexp ’.’ field
| > exp ’)’
exp ::=
atomexp

24

| [’ expl ’]°
| >{’ (field ’=’ exp)f o
I 2{1” exp® I}’
| constr [atomexp]
| var °>(° expf)’
| unop atomexp
| binop ’(’ exp ’,’ exp ’)’
| exp infixop exp
| exp >?’ exp ’:’ exp
const_decl ::= const var ’:’ type is exp

A5. Functions

name ::= IDENT
farg dec ::= (var)? ’:’ type
var_dec ::= varf 7:? type [’:=’ expl
atompatt ::=
any | literal | var | constr
| atompatt ’[’ exp ’]’ | atompatt ’.’ field
| > (> pattern ’)’
pattern ::= atompatt | constr [atompatt]
fstatement ::=
null
pattern] ’:=’ exp’

while exp do fstatement end [while]
foreach var do fstatement end [foreach]
if exp then fstatement (elsif exp then fstatement)* [else fstatement] end [if]

case exp of (pattern ’->’ fstatement)T end [case]

fstatement ’;’ fstatement
| return exp
function_decl ::=
function name °’ (°’ farg_decf 2)? 72 type is
[var var_dec!]
[begin fstatement end | return exp]

A6. Processes

state ::= IDENT

port := IDENT

left ::= °[’ DECIMAL | ’]’ DECIMAL

right ::= DECIMAL °]° | DECIMAL *[’ | >...” °[’
time_interval ::= left ’,’ right

port_dec ::= portf >:? [in] [out] channel

arg dec ::= ([&] var)f >:? [read] [write] type
transition ::= from state statement

statement ::=

25

null

patternf 7= expf

patternf ’:=’ any [where exp]

while exp do statement end [while]

foreach var do statement end [foreach]

if exp then statement (elsif exp then statement)* [else statement] end [if]
select statementJ[r:| (unless statementfj)* end [select]

|

|

|

|

|

|

| case exp of (pattern ’->’ statement)T end [case]
|
|
|
|
|
|

to state

loop

wait time_interval
statement ’;’ statement
port

port 7’ patternf [where exp]
| port ’!’ exp’
process_decl ::=
process name
[’[’ port_dec! *1’]
[’ arg_dect ’)’]
is states state’
[var var_dec?]
[init statement]
transition™

A7. Components

arg ::= exp | ’&’ var

instance ::= name [’[’ portf 101 PO argf Y07
o= %) +

portset ::= 7%’ | port]

compblock ::= instance | composition

composition ::=

| par [portset in] ([portset ’->’] compblock)Jlr| end [par]
component_decl ::=
component name
[’ [’ port_dec! ’1°]
[’ arg_dect ?)’]
is [var var_dec']
[port (port_dec [in time_intervall)']
[priority (portT > portT)f]
[init statement]
composition

In priority declarations, ajl...la, > bil...|b,, is a shorthand for (Vi € {1,...,n})(Vj €
{1,...,m})(a;> b;).

26

AS8. Programs

declaration ::=
type_decl
| channel_decl
| const_decl
| function_decl
| process_decl
| component_decl
program ::=
declaration™

name

27

