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Abstract— This paper presents some recent develop-
ments of the LAAS architecture for autonomous mobile
robots. In particular, we specify the role of the Exe-
cution Control level of this architecture. This level has
a fault protection role with respect to the commands
issued by the decisional level, which are transmitted to
the real system (through the functional level). We in-
troduce a new approach and a new tool inspired from
the model checking domain. We present a new language
to specify the model of acceptable and required states
of the system (valid contexts for requests to functional
module and resources usage). This language is com-
piled in an OBDD (Ordered Binary Decision Diagram)
like structure which is then used online to check the
specified constraints in real-time. Such model check-
ing approach could be extended to check off line more
complex temporal properties of the system.

I. INTRODUCTION

There is an increasing need for advanced autonomy
in complex embedded real-time systems such as robots,
satellites, or UAVs. The growing complexity of the
decision capabilities of these systems raises a major
problem: how to prove that the system is not going
to engage in dangerous states? How to guarantee that
the robot will not grab a sample with its arm, while
moving (which could supposedly break the arm)? How
to make sure that RCS jets on a satellite are not fired
when the camera lens protection is off?7 etc. A par-
tial response to this problem is to use a planner which
only synthesizes valid and safe plans. Yet, high level
planners do not (cannot) have a complete model repre-
senting the full extend of their actions. Some of these
actions are refined by the supervisor/executive, there-
fore the particular sequence of commands sent to the
physical system is not completely planned.

A solution to guarantee the safety properties is to
integrate a system that formally controls the validity
of the commands sent to the physical system and pre-
vents it from entering in an inconsistent state. This
controller must check the system consistency online
during system execution without affecting the system
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basic functionalities, such as reaction time.

The LAAS! architecture, presented in section II,
foresaw such a mechanism in its Execution Control
Level, but for various reasons, the approach and tools
proposed to fill this functionality were not used. Sec-
tion IIT presents the Execution Control Level roles and
requirements, with a state of the art and related works.
Section IV gives an informal description of the pro-
posed approach, the tool and the language we use for
the Execution Control Level. In section V, we present
some experimental results of the execution control sys-
tem. We then conclude the paper and consider future
works and research directions.

II. THE LAAS ARCHITECTURE

The LAAS architecture [1] was originally designed
for autonomous mobile robots. This architecture re-
mains fairly general and is supported by a consistently
integrated set of tools and methodology, in order to
properly design, easily integrate, test and validate a
complex autonomous system.

As shown on figure 1, it has three hierarchical levels,
with different temporal constraints and manipulating
different data representations. From the top to the
bottom, the levels are:

o A decision level: This higher level includes the de-
liberative capabilities such as, but not limited to:
producing task plans, recognizing situations, faults
detections, etc. It embeds at least a supervi-
sor/executive [2], which is connected to the under-
lying level, to which it sends requests that will ul-
timately initiate actions and start treatments. It is
responsible for supervising plans or procedures execu-
tion while being at the same time reactive to events
from the underlying level and commands from the op-
erator. Then according to particular applications it
may integrate other more complex deliberation capa-
bilities, which are called by the supervisor/executive
when necessary. The temporal properties of the super-
visor are such that one guarantees the reaction time of
the supervisor (i.e. the time elapsed before it sees an
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Fig. 1. The LAAS Architecture.

event), but not much can be said for other decisional
components.

o An execution control level: Just below the decisional
level, the Requests and Resources Checker (R2C)
checks the requests sent from above to the functional
level, as well as the resources usage. It is synchronous
with the underlying functional modules, in the sense
that it sees all the requests sent to them, and all the re-
ports coming back from them. It acts as a filter which
allows or disallows requests to pass, according to the
current state of the system (which is built online from
the past requests and past replies) and according to
a formal model of allowed and forbidden states of the
functional system. The temporal requirements of this
level are hard real-time. This is the level on which this
paper focuses.

o A functional level: It includes all the basic built-in
robot action and perception capabilities. These pro-
cessing functions and control loops (image processing,
motion control, ... ) are encapsulated into controllable
communicating modules [3]. Each module provides a
number of services and treatments available through
requests sent to it. Upon completion or abnormal ter-
mination, reports (with status) are sent back to the
requester. Note that modules are fully controlled from
the decisional level through the R2C. Modules also
maintain so called “posters”; data produced by the
modules, such as the current position and speed (from
the locomotion module) or current trajectory (from
the motion planning module) which can be seen by
other modules and the levels above. The temporal
requirements of the modules depend on the type of
treatments they perform. Modules running servo loop
(which have to be ran at precise rate and interval with-
out any lag) will have a higher temporal requirement

than a motion planner, or a localization algorithm.

This architecture naturally relies on several rep-
resentations, programming paradigms and processing
approaches meeting the precise requirements specified
for each level. We developed proper tools to meet
these specifications and to implement each level of
the architecture: IxTeT a temporal planner, Propice
a procedural system for tasks refinement and super-
vision/executive, and G*oM for the specification and
integration of modules at that level. These various
tools share the same namespace (i.e. the name of the
modules, requests, arguments and posters).

This paper focuses on the Execution Control Level.
Until recently, this level was implemented using the
KHEOPS system, but for various reasons (language,
complexity, etc) we moved to a newer approach/tool:
the Requests and Resources Checker (R2C) and the
ExOGEN tool used to implement it.

II1I. ExEcuTioN CONTROL LEVEL
A. Role and Requirements

The main role of the Execution Control Level and
its main component the R2C is a fault protection role.
Faults are inevitable, even more with complex deci-
sional system partially based on informal methods and
tools. Yet to be able to use such advanced decisional
tools, one needs to design systems which in the worse
cases prevent the system from engaging into disastrous
situations. Thus the execution control level has a “sim-
ple”, yet critical role in the architecture:

o As the interface between the decisional and the func-
tional level, it ensures that all the requests passed to
the functional level remain consistent with respect to
a model of desirable or undesirable states of the sys-
tem, i.e. interactions between the functional modules.
For example, it is the R2C role to make sure that a
request to move the robot is not issued while a picture
is being taken.

o It manages the resources of the system and guaran-
tees that any requests leading to an overconsumption
or inconsistent use of resources is properly handled.

o It acts synchronously with the functional level to en-
sure a consistent view of the state of functional mod-
ules.

o It acts in guaranteed real-time. No request to the
functional level should be delayed more than one R2C
cycle before being processed.

This critical role requires the use of formal tools to
validate it. Moreover for this tool to be used by the en-
gineers developing complex autonomous systems, one
needs to provide a user-friendly specification language.



B. State of the Art in Execution Control

Many of the concerns raised in the previous section
are not new, and some robotics architectures address
them in one way or another.

Indeed, some of the requirements presented above
were clearly fulfilled by a previous version of the
LAAS execution control layer based on KHEOPS [4].
KHEOPS is a tool for checking a set of propositional
rules in real-time. A KHEOPS program is thus a
set of production rules (condition(s) — action(s)),
from which a decision tree is built. The main advan-
tage of such representation is the guaranty of a max-
imum evaluation time (corresponding to the decision
DAG depth). However, the KHEOPS language is not
adapted to resources checking and appears to be quite
cumbersome to use.

Another interesting approach to prove various for-
mal properties of robotics system is the ORCCAD
system[5]. This development environment, based on
the ESTEREL [6] language provides some extensions
to specify robots “tasks” and “procedures”. However,
this approach does not address architecture with ad-
vanced decisional level such as planners.

In [7], the author presents another work related to
synchronous language which has some similarities with
the work presented here. The objective is also to de-
velop an execution control system with formal check-
ing tools and a user-friendly language. This system
represents requests at some abstraction level (no di-
rect representation of arguments nor returned values).
This development environment gives the possibility
to validate the resulting automata via model-checking
techniques (with SIGALI, a SIGNAL extension).

In [8], the authors present the CIRCA SSP plan-
ner for hard real-time controllers. This planner syn-
thesizes off-line controllers from a domain description
(preconditions, postconditions and deadlines of tasks).
It can then deduce the corresponding timed automa-
ton to control on-line the system, with respect to these
constraints. This automaton can be formally validated
with model checking techniques.

In [9] the authors present a system which allows the
translation from MPL (Model-based Processing Lan-
guage) and TDL (Task Description Language) to SMV
a symbolic model checker language. Compared to our
approach, this system seems to be more designed for
the high level specification of the decisional level, while
our approach focuses on the online checking of the out-
comes of the decisional level.

IV. R2C AND THE ExO°Gen ToOOL

In this section we give a description of the R2C,
the main component of the LAAS Execution Control
Level. The internal model of the R2C is built using the

EXCGEN tool which largely uses the G*oM semi formal
descriptions of the underlying functional modules [3]
and its namespace.

A. Overview

The R2C (see figure 2) is designed to support a safe
execution of the system. It contains a database rep-
resenting the current state of the functional level (i.e.
running instances of requests, resources levels, and his-
tory of requests) and — according to these information
and the model checker — calculates appropriate actions
to keep the system safe.
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Fig. 2. R2C general view.

The possible R2C actions are: to launch a request;
to kill an existing request; to reject a request (and
report it) and to report a request completion.

B. A real example

In this section we illustrate ExOGEN usage and the
model we implemented on our XR4000 Nomadics.
This example is mostly related to the poster localiza-
tion function used on this robot?. The figure 3 repre-
sents dependencies between modules described below:
e xr4000: This module groups all the basic function-
alities of the xr4000 nomadics. We can find here re-
quests for locomotion, US and IR control.

e LRF: This module controls the LRF and calculates
segments for localization and obstacles detection.

e platine: It controls the pan end tilt cameras posi-
tions.

e camera: Manages cameras and images acquisition.
e nd,band: Two modules to control the navigation
and obstacle avoidance.

o segloc: Localizes the robot according to laser seg-
ments and odometric robot position.

e locpost: This module controls the visual localiza-
tion with posters.

20ur XR4000 has various means to localize such as, LRF seg-
ments matching in a previously acquired map, or localization
using posters on the wall, etc.
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Fig. 3. Diligent Architecture

e teleop: Grab some robot information and send it
to a server periodically. It is used to control our robots
via a web interface.

e topo: Calculates the topological position of the
robot used by the supervisor(Example: the robot has
to move more slowly in a room than in a corridor).

e MP: The Motion Planning module computes the best
trajectory for the robot to reach a particular position
(taking into account known obstables).

To fully present this example we need to describe
some requests of the involved modules:

e xr4000_GotoRelative(?relative_pos) This re-
quest of the xr4000 module is used to make basic
moves. 7relative_pos is a two dimensional position
relative to the current robot position.

e band Move(7pos), nd_Goto(?pos),
nd_ExecTraj(7pos) Are three requests to move the
robot using various avoidance mechanism (Elastic
Band in the band module, and Near Diagram ap-
proach for nd) to an absolute position ?pos. They
are all incompatible with one another and use
xr4000_GotoRelative at the lowest level.

e locPost_ActivePosterSearch(7poster) is a re-
quest of the locPost module, called to enable robot
localization using posters on the wall. When it runs,
the robot tries to find the poster ?poster and correct
its position according to the localization.

e platine CmdPosTilt(7pos), platine_CmdPosPan(?pos)

Are requests from the platine modules to set the
pan/tilt camera platine position to ?pos.
Note that these seven requests from five different

modules are withdrawn from a much larger set of mod-
ules and requests just to give example of the R2C us-

age.
Here are some constraints examples for these re-
quests execution:
o one cannot call xr4000_GotoRelative while a mov-
ing request execute (i.e. if band Move, nd_Goto or
nd_ExecTraj is active),
« only one moving request can be executed at the same
time,
o the platine cannot be moved by an external request
during a poster search,
o the robot cannot move during a poster search,
All these constraints can be expressed with the
EXOGEN tool described below.

C. Presentation of ExXOGEN

This section presents the EXPGEN tools and its lan-
guage used to build the main components of the R2C.
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An ExOGeN program consists of a set of requests and
resources usage descriptions. For each request of the
functional level — as defined by G*"oM — one may de-
fine the preconditions it has to verify to be allowed



for execution. Those preconditions can be defined on
the arguments values of the requests themselves, past
requests (i.e. running requests) and states of the cur-
rent system (which results from previously completed
requests). Moreover when applicable, one has to spec-
ify the resources used by a particular request call.

The ExOGEN language has been specifically designed
to easily represent those descriptions. For a particular
application, the EXOGEN program contains hundreds of
such preconditions (which need to be verified or main-
tained), as well as the resources usage.

We shall now describe the EXOGEN language features.

C.1 Request Launching Context

Contexts are used to describe states that are ei-
ther required or forbidden to launch a request. Thus
we have contexts to prevent request execution (fail)
and contexts required for request execution (check).
Moreover, these contexts can be checked before launch-
ing (precond:), and while the request is running
(maintain:)

The contexts are conjunctions of predicates. We
have three predicates:

Active(request(?arg)[ with cstr™ ]) is true when an in-
stance of request satisfying cstr is currently running.

Last_Done(request(?arg): ?ret[ with cstr™]) istrue when

the last correctly terminated instance of request satis-
fies cstr.
Resource tests example: BatLevel < 10.

The constraints can be of the following types: range
of a variable, comparison of a variable with a constant
value. They can be defined over the arguments and, for

the Last_Done predicate, the results of the requests.

Example: To express the fact that we cannot call
xr4000_GotoRelative during a moving request exe-
cution one writes:

request xr4000_GotoRelative(?7_) {
fail {
maintain:
Active ({band_Move(?7_) | nd_Goto(?7_) |
nd_ExecTraj(?7_)});
1

C.2 Mutual exclusion between requests

EXOGEN includes a control structure mutex to eas-
ily describe mutual exclusion between requests. In a
mutex we declare requests that must be excluded (i.e.
only one of these requests can run at the same time)
and the contexts when this mutual exclusion is ac-
tive. Similarly to request launching contexts (see IV-
C.1), mutual exclusion contexts can be checked before
(precond:) or during (maintain:) requests execu-

tion.

Example: Thus, the fact that we must have only
one moving request at the same time can be described
with:

mutex {band_Move(?7_), nd_Goto(?_), nd_ExecTraj(?7_)} {}
This will be understood by ExCGeN as:

request band_Move(?_) {
fail {

Active({nd_Goto(?_) | nd_ExecTraj(?_)});
}r
request nd_Goto(?_) {
fail {

Active ({band_Move(?_) | nd_ExecTraj(?_)});
}r

C.3 Resources

We distinguish two types of resource:
sharable: The resource (such as battery power) is bor-
rowed during request execution and released at the end
of execution.
depletable: 'The resource (such as battery load) is con-

sumed /produced by request execution®.

To describe a resource, we have to declare its type,
its name and to indicate its location in the functional
module description (most likely in a G*"oM poster).
Example:

depletable batLevel: auto(Battery_State.level);
sharable batPower: auto(Battery_State.power);

Resources usage is declared with: use(wvalue) and
produce(value). For instance to describe the battery
usage of the xr4000_GotoRelative request we write:

request xr4000_GotoRelative(?_) {
uses {
batLevel: use(1.2);
batPower: use(3);}
[...1}

D. Internal Model Structures

The ExOGEN compiler produces an internal structure
similar to an OBDD* [10], named OCRD for Ordered
Constrained Rule Diagram. A description of how it
is built can be found in [11]. This data structure of-
fers real-time guarantees (as we can give a maximum
traversal time) and can formally validate some tempo-
ral properties via a model checking approach.

V. EXPERIMENTAL RESULTS

We implemented an R2C on our XR4000 Nomadics:
Diligent (see Figure 5). In its current configuration,
Diligent has the architecture presented on Figure 3.
There are currently only few rules but the results are
quite encouraging.

With an ExPGEN declaration containing six binary
mutexes, one ternary mutex and one fail context we
build the resulting OCRD in 67 seconds® — including

30ur model remains pessimistic, as the consumption is done at
the launch of the request and the production at the completion
of the request.

40BDD: Ordered Binary Decision Diagram.

5The machine used is a Sunblade 100 with 512 Mb of memory.



Fig. 5. Diligent

40 seconds of optimization. The resulting OCRD has a
maximum depth of 17 and the maximum node traver-
sal number before a controllable one is 13. Therefore,
at best, the resulting R2C will make 13 tests before
doing any action and the maximum delay of execution
of the R2C corresponds to the traversal of 17 nodes
(i.e. 17 tests/actions). After simplification and opti-
mization of the diagram, the graph contains 552 nodes.
Note that, similarly to OBDDs, the resulting graph
size (given by the number of node) depends of the
predicate order. So we added an optimization algo-
rithm based on the sifting method (see [12]) adapted
to the OCRD data structure.

On our Nomadics XR4000, the average traversal
time of the decision diagram in the R2C is 100 mi-
croseconds.

VI. CONCLUSION AND FUTURE WORKS

We have briefly presented the LAAS architecture,
its components and its integrated tools. Then the pre-
sentation focuses on the Execution Control Level of
this architecture and its main component the Requests
and Resources Checker (R2C). This layer of the LAAS
architecture has a critical role with respect to safety
and faults protection. It must guarantee that the func-
tional modules which “act” on the real physical system
are properly controlled and do not engage in “danger-
ous” situations with respect to the “commands” com-
ing from the decisional level.

Thus the R2C and its associated tool EXOGEN pro-
pose a language in which the user can specify, using
the G*"oM namespace, the contexts in which a particu-
lar request (with constraints on its arguments) can be
executed.

Our approach using OCRD is similar to OBDD, thus
it eases the formal verification of the generated model.
Moreover, it offers some real-time properties such as

the guaranty of the maximum time taken to check new
requests. Another interesting property inherited from
OBDD is the reduction of input formula to a canonical
form. The generated DAG is relatively compact (de-
pending on predicates ordering method) and is unique.
The counterpart of this reduction property is that the
completeness checking of a declaration® is harder than
with a complete representation.

Our objective in the future is to experiment formal
verification tools based on model-checking techniques
applied to OCRD and execution control problem. An-
other considered extension is to add temporal informa-
tions to the description of the R2C, to allow more com-
plex (Reachability of a state from a particular state,
etc).
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