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Abstract

This paper presents some recents developments of the LAAS architecture for autonomous
systems. In particular, we clarify and specify the role of the Execution Control level of our
architecture. This level has a fault protection role with respect to the command issued by the
decisional level, which are transmitted to the real system (through the functional level). To
implement this Execution Control level, we propose an approach and a tool inspired from the
model checking domain. We present a new language, used to specify the model of acceptable
and required states of the system (valid contexts for requests to functional module and resources
usage). The model written in this language is then compiled in an OBDD (Ordered Binary
Decision Diagram) like structure which is used online to check in real-time the constraints and the
rules specified. Such model checking approach, used in a synchronous context, provides critical
dependable properties. Moreover, these approaches can be further used to check off line more
complex temporal properties of the system.

1 Introduction

There is an increasing need for advanced autonomy in complex embedded real-time systems such
as robots, satellites, or UAVs. The growing complexity of the decision capabilities of these systems
raises a major problem: how to prove that the system is not going to engage in dangerous states?
How to guarantee that the robot will not grab a sample with its arm, while moving (which could
supposedly break the arm)? How to make sure that a satellite RCS jets are not fired when the camera
lens protection is off? etc. A partial response to this problem is to use a planner which will only
synthesizes valid and safe plans. Still, high level planners do not (cannot) have a complete model
representing the full extend of their actions. Moreover, some of these actions are refined by the
supervisor/executive, therefore the particular sequence of commands sent to the physical system is not
completely controlled by the planner.

A solution to guarantee this fault protection property is to integrate a system that formally controls
the validity of the commands sent to the physical system and prevents it to enter in an inconsistent
state. This controller must check system consistency online during system execution without affecting
the system basic functionalities, such as computation time. This checking is made in a synchronous
hypothesis execution context.

The LAAS1 architecture, presented in section 2, foresaw such mechanism in its execution control
level, but for various reasons, the approach and tools proposed to fill this functionality was not used.
Section 3 presents the Execution Control Level roles and requirements, with a state of the art of related
works. Section 4 gives an informal description of the proposed approach, the tool and the language we
use for the Execution Control Level, while section 5 presents the link between our proposed approach
and the Ordered Binary Decision Diagram model. We then conclude the paper and consider future
works and research directions.

2 The LAAS Architecture

The LAAS architecture [1] was originally designed for autonomous mobile robots. This architecture
remains fairly general and is supported by a consistently integrated set of tools and methodology, in
order to properly design, easily integrate, test and validate a complex autonomous system.

∗This paper has been published in The 7th International Conference on Intelligent Autonomous Systems (IAS-7),
March 25-27, 2002, Marina del Rey, California, USA.

†List of authors in alphabetical order.
1LAAS Architecture for Autonomous System.
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As shown on figure 1, it has three hierarchical levels, having different temporal constraints and
manipulating different data representations. From the top to the bottom, the levels are:
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Figure 1: The LAAS Architecture.

• A decision level: This higher level includes the deliberative capabilities such as, but not limited
to: producing task plans, recognizing situations, faults detections, etc. It embeds at least a
supervisor/executive [10], which is connected to the underlying level, to which it sends requests
that ultimately will initiate actions and start treatments. It is responsible for supervising plans or
procedures execution while being at the same time reactive to events from the underlying level
and commands from the operator. Then according to particular application it may integrate
other more complex deliberation capabilities, which are called by the supervisor/executive when
necessary. The temporal properties of the supervisor are such that one guarantees the reaction
time of the supervisor (i.e. the time elapsed before it sees an event), but not much can be said
for other decisional components.

• An execution control level: Just below the decisional level, the Requests and Resources Checker
(R2C) checks the requests sent from above to the functional level, as well as the resources
usage. It is synchronous with the underlying functional modules, in the sense that it sees all
the requests sent to them, and all the reports coming back from them. It acts as a filter which
allows or disallows requests to pass, according to the current state of the system (which is built
online from the past requests and past replies) and according to a formal model of allowed and
forbidden states of the functional system. The temporal requirements of this level are hard
real-time. This is the level on which this paper focuses.

• A functional level: It includes all the basic built-in robot action and perception capabilities.
These processing functions and control loops (image processing, motion control, . . . ) are encap-
sulated into controllable communicating modules [7]. Each module provides a number of services
and treatments available through requests sent to it. Upon completion or abnormal termination,
reports (with status) are sent back to the requester. Note that modules are fully controlled from
the decisional level through the R2C. Modules also maintain so called “posters”; data produced
by the modules, such as the current position and speed (from the locomotion module) or current
trajectory (from the motion planning module) which can be seen by other modules and the levels
above. The temporal requirements of the modules depend of the type of treatments they do.
Modules running servo loop (which have to be ran at precise rate and interval without any lag)
will have a higher temporal requirement than a motion planner, or a localization algorithm.

This architecture naturally relies on several representations, programming paradigms and processing
approaches meeting the precise requirements specified for each level. We developed proper tools to meet
these specifications and to implement each level of the architecture: IxTeT a temporal planner, Propice
a procedural system for tasks refinement and supervision/executive, and Gen

oM for the specification
and integration of modules at that level. These various tools share the same namespace (i.e. the name
of the modules, requests, arguments and posters).

This paper focuses on the Execution Control Level. Until recently, this level was implemented
using the KHEOPS system, but for various reasons (language, complexity, etc) we moved to a newer
approach/tool: the Requests and Resources Checker (R2C) and the tool used to implement it.



3 Execution Control Level

3.1 Role and Requirements

The main role of the Execution Control Level and its main component the R2C is a fault protection
role. Faults are inevitable, even more with complex decisional system partially based on non formal
methods and tools. Still to be able to use such advanced decisional tools, one need to design systems
which in the worse cases prevents the system of engaging in disastrous situations. Thus the execution
control level has a “simple” yet critical role in the architecture:

• As the interface between the decisional and the functional level, it ensures that all the requests
passed to the functional level remain consistent with respect to a model of desirable or undesirable
states of the system, i.e. interactions between the functional modules. For example, it is the
R2C role to make sure that a request to move the robot is not issued while a picture is being
taken.

• It manages the resources of the system and guarantees that any requests leading to an overcon-
sumption or inconsistent use of resources is properly handled.

• It acts synchronously with the functional level to ensure a consistent view of the state of func-
tional modules. In one cycle, all inputs are parsed simultaneously, all outputs are produced
“instantaneously” and simultaneously. This is of course an hypothesis, but it provides strong
determinism to the whole checking process.

• It acts in guaranteed real-time. No request to the functional level should be delayed more than
one R2C cycle before being processed.

This critical role requires the use of formal tools to validate it. Moreover for this tool to be used by
the engineers developing complex autonomous systems, one need to provide a user-friendly specification
language.

3.2 State of the Art in Execution Control

Many of the concerns raised in the previous section are not new, and some robotics architectures
address them in some ways or another.

Indeed, some of the requirements presented above were clearly fulfilled by a previous version of
the LAAS execution control layer based on KHEOPS [4]. KHEOPS is a tool for checking a set of
propositional rules in real-time. A KHEOPS program is thus a set of production rules (condition(s) →
action(s)), from which a decision tree is built. The main advantage of such representation is the
guaranty of a maximum evaluation time (corresponding to the decision DAG depth). However, the
KHEOPS language is not adapted for resources checking and appeared to be quite cumbersome to
use.

Another interesting approach to prove various formal properties of robotics system is the ORCCAD
system[6]. This development environment , based on the Esterel [2] language provides some exten-
sions to specify robots “tasks” and “procedures”. However, this approach does not address architecture
with advanced decisional level such as planners.

In [12] the author presents another work related to synchronous language which has some similarities
with the work presented here. The objective is also to develop an execution control system with formal
checking tools and an user-friendly language. This system represents requests at some abstraction level
(no direct representation of arguments nor returned values). This development environment gives the
possibility to validate the resulting automata via model-checking techniques (with Sigali, a Signal
extension).

In [9], the authors present the CIRCA SSP planner for hard real-time controllers. This planner
synthesizes off-line controllers from a domain description (preconditions, postconditions and deadlines
of tasks). It can then deduce the corresponding timed automaton to control on-line the system with
respect to these constraints. This automaton can be formally validated with model checking techniques.

In [13] the authors present a system which allow the translation from MPL (Model-based Process-
ing Language) and TDL (Task Description Language) to SMV a symbolic model checker language.
Compare to our approach, this system seems to be more designed for the high level specification of the
decisional level, while our approach focuses on the online checking of the outcomes of the decisional
level.



4 R2C and the EXoGEN Tool

In this section we give a description of the R2C, the main component of the LAAS Execution
Control Level. The internal model of the R2C is built using the EXoGEN tool which largely uses the
Gen

oM semi formal descriptions of the underlying functional modules [7] and its namespace.

4.1 Overview

The R2C (see figure 2) is designed to support safe execution of the system. It contains a database
representing the current state of the functional level (i.e. running instances of requests, resources
levels, and history of requests) and – according to these information and the model checker – calculates
appropriate actions to keep the system safe.

The possible R2C actions are: to launch a request; to kill an existing request; to reject a request
(and report it) and to report a request completion.

4.2 Presentation of EXoGEN

This section presents the EXoGEN system and its language used to build the main components of
the R2C.
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Figure 2: R2C general view.
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Figure 3: EXoGEN development cycle.

An EXoGEN program consists of a set of requests and resources usage descriptions. For each request
of the functional level – as defined by Gen

oM – one may define the preconditions it has to verify to
be allowed for execution. Those preconditions can be defined on the arguments values of the requests
themselves, past requests (i.e. running requests) and states of the current system (which results from
previously completed requests). Moreover when applicable, one has to specify the resources used by a
particular request call.

The EXoGEN language has been specifically designed to easily represent those descriptions. For a
particular application, the EXoGEN program will contain hundreds of such preconditions (which need
to be verified or maintained), as well as their resources usage.

We shall now describe the EXoGEN language features:

4.2.1 Request Launching Context

Contexts are used to describe states that are either required or forbidden to launch a request. Thus
we have contexts to prevent request execution (fail:) and contexts required for request execution
(check:). Moreover, these contexts can be checked before launching (precond:), and while the request
is running (maintain:)

The contexts are conjunctions of predicates. We have three predicates:

Active(request(?arg)[ with cstr+ ]) is true when an instance of request satisfying cstr is currently
running.

Last Done(request(?arg):?ret[ with cstr+]) is true when the last correctly terminated instance
of request satisfies cstr.

Resource tests example : BatLevel < 10.



The constraints can be of the following types: range of a variable, comparison of a variable with a
constant value, equality of a variable with a constant. They can be defined over the arguments and
the results of the requests.

Example: Consider a robot with a camera with two modes: fixed (the robot cannot move while
taking a picture) and traveling (the robot must move while taking a picture). EXoGEN code for
TakeImg request should be2:

request Cam_TakeImg() { [...]

fail { precond:

Last_Done(Cam_SetMode(?m) with ?m==FIXED) && Active(Mov_Move(?_)); }

check { maintain:

Last_Done(Cam_SetMode(?m) with ?m==TRAVELING) && Active(Mov_Move(?_)); } }

4.2.2 Resources

We distinguish two types of resource:

sharable: The resource (such as battery power) is borrowed during request execution and released
at the end of execution.

depletable: The resource (such as battery load) is consumed/produced by request execution3.

To describe a resource we have to declare its type, its name and indicate its location in the functional
module description (most likely in a Gen

oM poster). Example:

depletable batLevel: auto(Battery_State.level);

sharable batPower: auto(Battery_State.power);

Resources usage is declared with: use(value) and produce(value). For instance to describe the
battery usage of the Camera takeImage request we write:

request Cam_TakeImg() {

uses {

batLevel: use(10);

batPower: use(5);}

[...]}

4.3 Internal Model Structures

To allow the real-time checking of the various constraints specified by the user, the EXoGEN compiler
produces a structure which is a mix of those produced by KHEOPS [8] and OBDD4 [11]. This structures
corresponds to a binary decision Directed Acyclic Graph (DAG) and guarantees a maximum execution
time for checking. For example given the request below :

request Cam_TakeImg() {[...]

fail {

preconds:

Last_Done(Cam_SetMode(?m) with ?m==FIXED) && Active(Mov_Move(?_)); }

[...]}

The EXoGEN compiler will translate the Active(x) predicate as:
(
askFor(x)∧¬reject(x)

)
∨Running(x)

The previous code is thus equivalent to the boolean formula:((
askFor(Mov Move()) ∧ ¬reject(Mov Move())

)
∨ Running(Mov Move())

)
∧ LastDone(Cam SetMode(?m) with ?m = FIXED)
⇒ reject(Cam TakeImg())

The EXoGEN compiler generates the OBDD shown on figure 4
In this DAG, we distinguish two types of predicates. The uncontrollable ones – LastDone, askFor,

Running and resources predicates – corresponding to external events (external demands and current
system state) and the controllable ones – kill, reject – which correspond to actions the R2C can
perform. The principle of the R2C is to keep the overall formula true. To assess this goal the compiler
has fixed the value of controllable predicates value to true. For instance in figure 4 if the last correctly

2the Cam TakeImg and the Cam SetMode correspond to the two requests (TakeImg and SetMode) of the Cam module
defined with GenoM.

3Our model remains pessimistic, as the consumption is done at the launch of the request and the production at the
completion of the request.

4OBDD : Ordered Binary Decision Diagram.
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Figure 4: Example of rule DAG.

terminated instance of Cam SetMode was launched with the fixed argument value and the supervisor
launches new instance of Cam TakeImg and Mov Move then R2C will do reject(Cam TakeImg) to reach
the true leaf.

This DAG only deduces negatives actions (i.e. kill and reject). The corresponding positives
actions (respectively launch and keep) are deduced by the non-existence of the negative action. For
example if system requests rq and R2C has not deduced reject(rq) then it may execute the action
launch(rq).

The deduction is limited to the DAG traversal so program complexity order is proportional to its
depth which is fixed at compilation.

5 Formalization of the Executive

In this section we describe how EXoGEN constructs the structure described in section 4.3. This data
structure is based upon OBDD principles with an extension to support constrained predicates keeping
all well known properties of OBDD . We call it OCRD for Ordered Constrained Rule Diagram.

5.1 Definition of the OCRD

The OCRD is a binary DAG. Leaves may be true (>) or false(⊥). Each node is composed of a
predicate and its attached constraint, a branch to activate when the predicate and constraint is true
and a branch to activate when it is false. An OCRD node is represented like in OBDD. Figure 5
presents the basic representation of a predicate. The basic constructors are :

> : → OCRD

⊥ : → OCRD

( , , ) : CPred×OCRD ×OCRD → OCRD

a with cstr

a || cstr

!(a with cstr)

a || cstr

Figure 5: Representation of basics predicates.

The CPred type is the association of a predicate and its constraint. Its constructor is:

‖ : Predicate× Constraint → CPred

The reduction rule while building complete OCRD for a particular system is the same as OBDD
: the DAG (foo, whentrue, whenfalse) becomes whentrue iff whentrue = whenfalse. The negation
rule of an OCRD works like for OBDD (i.e. only the leafs are replaced by their negations).

The construction rules differ for binary operators. We now describe how we calculate the conjunction
of two OCRD. The rules when one of the tree is a leaf(> or ⊥) are trivial. The conjunction of two
OCRD with the same root node is: (a, t1, f1) ∧ (a, t2, f2) = (a, t1 ∧ t2, f1 ∧ f2)

The preceding rules are exactly the same that OBDD, the difference appears when two nodes
differ. For definition of this operation we have to define some operators for the CPred type :

− : CPred× CPred → CPred

∩ : CPred× CPred → CPred

≺ : CPred× CPred → Boolean

Where :

a ‖ ca − b ‖ cb =

{
a ‖ (ca ∧ cb) if a = b
a ‖ ca else

a ‖ ca ∩ b ‖ cb =

{
a ‖ (ca ∧ cb) if a = b
∅ else

a ‖ ca ≺ b ‖ cb =


> if a < b
⊥ if a > b
ca <cstr cb if a = b



A complete order (<p) is given on predicates. The operator <cstr is an order for constraints. This
order is partial because ca <cstr cb is not defined for the case that ∃x/ca(x) ∧ cb(x)

Now we can define the OCRD construction rules for conjunction of A = (a, ta, fa) and B = (b, tb, fb)

A ∧B =


(a, ta ∧B, fa ∧B) if a ≺ b
(b, tb ∧A, fb ∧A) if b ≺ a
A f B else

Where :

(a, ta, fa) f (b, tb, fb) = (a ∩ b, ta ∧ tb, fa ∧ fb)

∧ (a− b, ta ∧ fb, fa ∧ fb)

∧ (b− a, fa ∧ tb, fa ∧ fb)

Our goal in using OCRD as an extension of OBDD, is to keep the OBDD computational and logical
properties. So this data structure may be easily used for verification of temporal properties with an
appropriate model checker. The complexity of operations (like “restrict”, “satisfy one”,. . . see [3]) is
exactly the same as for OBDD.

It is well known that the choice of variable ordering largely influences the OBDD size (expressed
by the number of its nodes). Even if OBDD minimization is an NP-hard problem, we can find some
minimization techniques [5] with a lower complexity (the best is O(n2.3n)). Furthermore we have to
note that this optimization will be done during compilation time. So the duration of the minimization
sequence is not critical and will give some guarantees about the generated OBDD size.

6 Experimental results

We have implemented the EXoGEN tool and the resulting R2C is conected to the Gen
oM modules

and the supervisor implemented with Propice. Preliminary tests have been conducted with “toy”
problems, and we are now working on an implementation on our XR4000 Nomadics: Diligent(figure 6
and 7). Our experimentation goal is twofold:
- to test the R2C it on real experiments on board our robots and see how well it behaves, - to test
it on very large problems (i.e. with numerous modules, requests and constraints to check) to see how
well does it scale (size of the OCRD, traversal time compatible with hard real time, etc).
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Figure 7: Diligent

7 Conclusion and Future Works

We have briefly presented the LAAS architecture, its components and its integrated tools. Then
the presentation focuses on the Execution Control Level of this architecture and its main component
the Requests and Resources Checker (R2C). This layer of the LAAS architecture has a critical role
with respect to dependability, and in particular with respect to faults protection. It must guarantee
that the functional modules which “act” on the real physical system are properly controlled and do
not engage in “dangerous” situations in response to the “commands” coming from the decisional level.

Thus the proposed R2C and its associated tool EXoGEN propose a language in which the user can
specify, using the Gen

oM namespace, the contexts in which a particular request (with constraints on its
arguments) can or cannot be executed.

Our approach uses OCRD which are quite similar to OBDD. Thus the generated model used in a
synchronous hypothesis context provides excellent confidence in the system states reachability. More-
over, it offers some real-time properties such as the guaranty of the maximum time taken to check new
incoming requests and reports . Another interesting property inherited from OBDD is the reduction of



input formula to a canonical form. The generated DAG is relatively compact (depending on predicates
ordering method) and is unique. The counterpart of this reduction property is that the completeness
checking of a declaration5 is harder than with a complete representation.

We expect in near future to be add functionalities giving the possibility to check the modules
behavior and by this way indicates the supervisor whether services are executable or not.

Our main objective in the future is to experiment formal verification based on model-checking
techniques applied to OCRD and execution control problem. Another considered extension is to add
temporal informations to the description of the R2C, i.e. to represent state transitions, to allow more
complex validation functionalities (reachability of a state from a particular state, unreachable states,
etc).
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