
Software Safety Supervision On-board Autonomous Spacecraft

JP. Blanquart(1), S. Fleury(2); M. Hernek(3); C. Honvault(1); F. Ingrand(2);
JC. Poncet(4); D. Powell(2); N. Strady-Lécubin(4); P. Thévenod(2)

(1) EADS ASTRIUM, 31 rue des cosmonautes, F-31402 Toulouse Cedex 4, France
jean-paul.blanquart@astrium.eads.net (contact author)

(2) LAAS-CNRS, 7 avenue du colonel roche, F-31077 Toulouse Cedex 4, France
(3) ESTEC, Keplerlaan 1, PO Box 299, 2200 AG Noordwijk ZH, The Netherlands

(4) AXLOG Ingénierie, 19-21 rue du 8 mai 1945, F-94110 Arcueil, France

Abstract

This paper presents a study on dedicated software product assurance measures and dependability
techniques to support space on-board autonomous functions. An analysis of current standards and
techniques in space and other domains, and a survey of software autonomy projects from the point
of view of product assurance, dependability and safety are presented. Product assurance measures
are proposed, and the paper concludes with the description of two generic software components
developed and experimented to provide additional safety mechanisms in autonomous space
systems: a “safety bag” in charge of monitoring on-board a set of safety properties, and a
“plausibility checker” complementing on ground the validation means for interpreted procedures
before they are uploaded and executed on-board.

1 Introduction

The increase of autonomy is an important trend in space systems, taking advantage of the increase
of the on-board processing power to enable new or more efficient complex missions. This is
particularly useful when the ground cannot react in real-time due to the communication delays, non-
visibility periods, complexity or variability of the context. This raises new challenges for mission
reliability and safety, due to both the criticality of the autonomous on-board software components,
and to their complexity and the context variability. The former leads to strong software
dependability and safety requirements, while the latter makes more difficult to fulfil such
requirements. These peculiarities imply especially adequate software product assurance
methodology and software dependability techniques.

SPAAS (Software Product Assurance for Autonomy on-board Spacecraft) is an ESA project
(contract ESTEC 14898/01/NL/JA), granted to a consortium led by EADS Astrium with Axlog
Ingénierie and LAAS-CNRS [1]. The objectives of the project are to investigate dedicated software
product assurance measures to support autonomous functions both for nominal spacecraft
operations and for fault detection, identification and recovery management. In other words, how to
ensure safety and dependability of autonomous space software and especially of software in charge
of autonomous functions dedicated to the spacecraft safety and dependability management. Special
attention is put on software product assurance for advanced autonomy techniques (artificial
intelligence, self-learning techniques, etc.).

The project is split in two phases. The first phase investigates the lessons learnt from autonomous
non-space applications, the software product assurance requirements and then methods, tools and
procedures, for autonomous space systems. Special autonomy software safety aspects are then
investigated and an implementation plan is proposed for the second phase. The second phase is
dedicated to the definition of software functions (on-board and in the ground system) for the safety
of spacecraft with autonomy, and to their implementation and assessment through a pilot
application.

2 Standards and Practices

This section analyses the various methods for software dependability and safety, as recommended
in standards and norms, or used in industrial practice. Seven standards and norms were analysed:

 US Department of Standards MIL-STD-498 and 882D,

 IEC 61508 standard on programmable safety related systems,

 CENELEC EN 50126/8/9 series of standards for railway applications,

 UK Ministry of Defence MoD 00-55/6 standards for safety related software,

 Civilian aircraft DO 178B/ED12B standard,

 IEC 14598 standard on the evaluation of information technology products.

In addition, industrial practices were analysed, from former ESA studies on software dependability
and safety (PASCON WO12) and from advanced autonomy projects for airborne, waterborne and
terrestrial systems.

It appears that most safety-related software standards pay little explicit attention to autonomy and to
the particular advanced software technologies for system autonomy. In practice the recommended
set of techniques and methods for safety-related software may not be easily applicable considering,
e.g., the size and complexity of the software and of the input and state domains, the dependency of
the software behaviour on knowledge bases, etc. [2] This is confirmed by the available reports and
studies on advanced autonomy systems, as discussed for instance in a recent specific workshop that
addressed the verification and validation of autonomous and adaptive systems [3]. The following
main conclusions can be drawn:

 Learning systems are less amenable to dependability and safety arguments than those whose
knowledge and inference mechanisms are determined a priori by the designer.

 Separate knowledge representation is a key aspect that makes verification and validation of
AI-based systems different to that of classical software engineering.

 Only two (complementary) approaches seem feasible for ensuring safe autonomous
operation in unanticipated situations:

o Extensive simulation testing, preferably with an automated oracle.

o On-line assurance techniques, such as the safety bag/supervisor approach.

 An evolutionary program development strategy should facilitate a progressive refinement
approach in which critical autonomous system capabilities may be addressed first.

3 Software for Autonomy

Various software autonomy techniques are available such as rule-based systems, case-based
reasoning, constraint programming, genetic algorithms, fuzzy logic, artificial neural networks,
probabilistic networks, Markov decision processes, agent and multi-agent systems. A survey was
performed, analysing each technique according to its mathematical and algorithmic definition,
impact on space architecture and functions, and applicability of current software product assurance
standards. A focus was put on issues of interest for autonomy in space systems:

 From a functional viewpoint, on planning and scheduling, diagnosis, and on the notion of
on-board control procedures;

 From a product assurance viewpoint, on the applicability of software dependability methods
and of the clauses of the software product assurance standards for space systems (European
Cooperation for Space Standardization, ECSS [4]).

Usual software design approaches cannot tackle all the difficulties raised by autonomous systems.
Because of the complexity and the critical nature of those systems, product assurance is very
central. However product assurance calls for deterministic behaviour whereas autonomy requires
capacities to handle nominal and non-nominal situations and events in a wide range of contexts and
missions. The combinatory of all the possible states and events does not allow one to have an
exhaustive representation of those states and transitions in order to prove a priori the correctness of
the behaviour. In contrary, the system must be endowed with some decision capacities on board that
will be able to analyse on line the missions according to the current context (i.e., the current state of
the system and its environment) and to decide dynamically of the suitable actions to accomplish the
missions.

The answers are strongly related to software product assurance and they call for:

 A well-defined software architecture that can integrate both strong real-time functions and
robust decision capacities. Every part of the architecture must be precisely defined,
including its functions, interfaces, inputs and outputs, required temporal properties,
limitations, etc, and overall the logical and temporal articulations between these components
(see figure 1).

 Standard components and interfaces to permit coherent and incremental integration of
complex and heterogeneous functions.

 As far as possible, automatic code synthesis, the only to way guaranty the correctness of the
implementation.

 Specific tools to check dynamically the consistency of the system.

 Specific tools to design the two main functions of the decision level: the planning and the
supervision of the tasks or actions.

Figure 1: The LAAS three-level hybrid architecture

4 Autonomy Software Dependability and Safety

It finally appears that autonomous systems and especially those based on advanced autonomy
technologies and artificial intelligence (AI) pose some significant challenges regarding software
product assurance. They are a relatively new trend in real-world critical embedded applications,
particularly in space systems, and there have been few studies aimed specifically at defining
appropriate assurance techniques. However, several tentative conclusions may be drawn [5]:

 The problem of verifying and validating knowledge-independent components of an AI-
based system (e.g., inference mechanisms) is similar to that of classical software
engineering.

 Separate knowledge representation is one key aspect that makes verification and validation
of AI-based systems different to that of classical software engineering. Checking the
consistency and completeness of the knowledge representation has thus received deserved
attention. Several authors however underline the advantages, from a product assurance
viewpoint, of having domain-specific knowledge represented separately from procedural
mechanisms making use of it, since domain experts may more readily check it. Moreover,
logic-based inference mechanisms may allow formal proof of correctness properties.

 Learning systems, whose function emerges from training examples or during operation,
prove to be quite robust in practice. Nevertheless, they are less amenable to dependability
and safety arguments than those whose knowledge and inference mechanisms are
determined a priori by the designer.

 Although autonomous systems are required to operate for extensive periods of time without
human intervention, it is important that autonomous systems also support human
intervention when necessary. However, when humans and AI-based systems are to interact
synergistically, new human factor risks may be introduced.

 Autonomous operation can significantly impact software development in that domain-
specific knowledge needs to be encoded early on. An evolutionary program development
strategy should facilitate a progressive refinement approach in which critical autonomous
system capabilities may be addressed first.

 The most significant challenge in the use of AI-based techniques for autonomy is that of
unanticipated and complex situations in which the system is nevertheless expected to act
sensibly. As mentioned in section 2, there are only two apparent (complementary) ways to
address this challenge:

o Use extensive simulation testing to increase statistical confidence that the
autonomous system will behave as expected. For really extensive simulation testing,
some form of automated oracle should be envisaged. For space systems, this does
not only concern the autonomous on-board applications, but also the procedures
loaded or uploaded to be interpreted on-board (“on-board control procedures”).

o Use on-line assurance techniques, such as the safety-bag or safety supervisor
approach to ensure that catastrophic failures are avoided, which implies some form
of graceful degradation [6]. The generalization of the safety bag concept towards
“active safety management” is also an interesting direction for future research [2].

In addition to recommendations on design, validation and product assurance techniques, there is
thus a strong need for “functional assurance software components”, on the one hand to support
complementary validation through extensive simulation testing, and on the other hand to provide
safety-oriented monitoring and protection on-board during the operation phase.

5 Components for Safe Autonomous Spacecraft

The survey of dependability and safety software issues for autonomy in space systems especially
highlights:

 The importance of the verification activities, which must be supported by various
approaches and tools to widen the coverage for systems with such large spaces of states,
inputs and possible behaviours,

 The fact that despite intensive verification and validation activities, there may remain design
faults, as well as contexts and events leading to insufficiently specified and possibly
inappropriate behaviours; consequently it is necessary that mechanisms be provided to
monitor possible anomalous situations and inappropriate behaviours when they occur, with
the capability to maintain as much as possible the desired properties, especially safety
properties.

This leads to the definition of two kinds of software components for dependability and safety:

 A ground-based “plausibility checker” to support and complement the ground validation of
autonomy software, and especially the on-board control procedures before upload and actual
execution, the general architecture and situation of which are described in figure 2:

(DHS: Data Handling System; TC: Telecommand1.)

Figure 2: Plausibility Checker architecture and situation

1 “Telecommand” is used in this paper as a generic term to designate the various commands sent to the equipment items

on the platform or the payload, irrespective of their origin (ground or generated by an on-board application).

 An on-board “safety bag” to monitor on-line a set of safety properties so as to authorise or
not the execution of commands to the spacecraft elaborated by the autonomous software
applications. The architecture and situation of the safety bag are described in figure 3:

Vehicle system

Autonomous Application

Hardware
RTOS

DHS

Safety bag

Other ApplicationOther Application

DHS
Service

Equipment

Equipment

Equipment

State

TC
Services

Ground

(DHS: Data Handling System; RTOS: Real-Time Operating System; TC: Telecommand2)

Figure 3: Safety bag architecture and situation

The SPAAS project includes the elaboration of these two software components, safety bag and
plausibility checker, as generic components to be instantiated and used in various real space
projects with as few adaptations as possible, so as to support their dependability and safety.

6 Experimentation and Assessment

The safety bag and the plausibility checker were developed as generic components and their
experimentation has been performed through a three-month pilot application on hardware, software
and safety properties from real space projects.

The plausibility checker is developed in Java and has been experimented in several environments
including a standalone host workstation or personal computer, and a workstation connected to an
existing procedure validation facility. The experiment focused more precisely on the extent, scope
and nature of the properties that can be checked through this approach and provide a useful
complement to existing validation. Another aim was to analyse and identify the best approach for

2 As mentioned in note 1, “telecommand” designates any kind of command to an on-board equipment item, generated

by the ground or by an on-board application. If all commands can be managed by the safety bag and potentially

monitored according to a selected configuration, it is worth mentioning that the aim is mainly to monitor complex on-

board software applications rather than transferring the ultimate responsibility from ground to board.

such a component, from the definition of reusable specifications (and possibly some support
components and generation tools) for the development of project specific validation benches, up to
the development of a fully reusable component to plug into project specific validation benches.

The safety bag has been developed in C language and experimented on a real data handling system
running both in a Sun/Solaris and in a ERC32/VxWorks environment. The experimentation focused
on:

 The evaluation and assessment of performances (real-time performances and safety-related
performances: coverage, latency, false alarm rate);

 The investigation of potential improvements or alternative solutions, particularly for the
integration of the safety bag within the on-board platform architecture;

 The analysis of safety properties with the aim:
o To provide a methodological support and practical guidance to the definition of

relevant safety properties to projects where the safety bag is instantiated and
implemented;

o To assess the capability of the safety bag to monitor efficiently, through reliable
information available on-board, the various kinds of safety properties relevant for the
different nature of space systems and missions.

Two functions extracted from real space applications have been used to check the behaviour of the
Safety Bag component. The first function is an agility function commanding manoeuvres of
actuators to perform attitude control by means of direct telecommands. The second function is an
autonomous application generating activity plans by means of time-tagged telecommands.

The principle of the Safety Bag is simple. Each time
a telecommand is sent to the TC Services to be
routed to its final destination, this telecommand is
intercepted. A Transition function evaluates the
effect of the execution on the current system state.
A new (virtual) state is generated and a Verification
function checks whether the safety properties are
respected. If the properties are respected, the
telecommand is sent to its final destination for
actual execution, otherwise it is rejected.

Because some telecommands may be executed in more than one step (e.g., arm and fire or switch-
on and switch-off telecommands), the Transition function must have the knowledge of the pending
time-tagged telecommands. This allows, for example, estimating the power consumption of an
equipment during its activity. For this reason, the Safety Bag is placed at the interfaces of the
standard Telecommand Services of the Data Handling Services.

The Safety Bag intercepts the Telecommands
as well as cancellation commands
transmitted to the TC Services by any source.
In a first step, the Safety Bag processes the
time-tagged telecommands by memorizing
them, and the cancellation commands to
remove the commands from the memorized
list (if the cancellation does not violate safety
properties). Telecommands are then
transmitted to the standard TC Services that

System
State Foreseen

System
State

Transition
function

Verification
function

Telecommand

NOT OKOK

Application under surveillance

Other ApplicationOther Application

DHS
Service

Equipment

Equipment

Equipment

State

Ground

TC
Services

will process and route the telecommands immediately or at predefined time. When a telecommand
is routed to its destination, it is intercepted by the Safety Bag to perform (second step) the
verification of the safety properties. The verification is then based on the last known state of the
system.

In the frame of the experimentation, the safety properties checked by the Safety Bag concerned the
values of parameters sent to software applications and the available resources of the satellite.

The Safety Bag has been developed as a generic component and its instantiation to a particular
project requires to:

• Define the content of the System State (and when needed the functions that build it).

• Define the format of the telecommands processed by the system and in particular the
localization of the source and destination identification, the size of the data and the potential
time-tag.

• Develop the Transition functions. A transition function must be attached to each
telecommand that has to be checked. A simple Transition function only performs a raw
evaluation of the future System State generally based on worst cases. However, this can lead
to the generation of false alarms. A complex transition function implements a model of the
system. The estimation is more accurate but requires more processing power and time.

• Develop the Verification functions. One or several Verification functions can be developed
in order to minimize the number of checks to perform on the foreseen System State.

The definition of the System State content and of the format of the telecommands is done by means
of text files used to automatically generate the code that is later compiled and linked with the
generic Safety Bag library. This method is simple and allows the optimization of the code running
on the final target by avoiding for instance the implementation of an on-board interpreter. For the
experimentation, only few variables allowing the main parameters of the spacecraft to be known,
have been defined such as Position, Velocity and Time vector and available power.

Several Transition functions have been developed to estimate the effect of a manoeuver or an
activity on the system including the two-step commands. For example, an image acquisition activity
includes the switch-on and the switch-off of the optical instrument. Then the Transition function is
able to evaluate the power consumption of the instrument during its period of activity.

The Verification functions developed in the frame of the experimentation checked a subset of the
system state generated by the Transition function. This subset depends on each telecommand so as
to minimize the processing time.

Once the Safety Bag is included within the system, it can be activated and configured by specific
telecommands. The configuration defines for instance which telecommand emitters must be
monitored. The configuration can be modified on-line (by ground telecommands so as to avoid
uncontrolled erroneous modifications of the behaviour of the available safety mechanisms).

During all the tests of the experimentation, the Safety Bag proved its correct functional behaviour.
All the telecommands suspected to be dangerous for the system have been rejected and only these
telecommands. The Safety Bag correctly managed the time-tagged telecommands.

The Safety Bag has been tested in a representative on-board software architecture based on the
DHS32 running either on top of a Sun/Solaris or an ERC32/VxWorks environment. No functional
difference has been detected between the two environments.

7 Conclusion

The study reported in this paper addressed the software dependability and safety issues for
autonomous spacecraft, with focus on software product assurance approaches applicable to
autonomy software.

The survey of software safety and dependability methods, standards and industrial practice
highlighted the needs both to complement the verification of autonomy software through intensive
simulation and assessment of plausibility properties, and to monitor on-line at least the most
important safety-related spacecraft properties. This led to the definition, development, validation
and experimentation of generic software components to support dependability and safety of
autonomous spacecraft: an on-board safety-bag and a ground-based autonomous procedures
plausibility checker, to be used in future autonomous space projects.

The insertion of the Safety Bag in an existing system is very simple. The major part of the work
consists in the identification of the required System State variables and the coding of corresponding
elaboration functions as well as of the Transition and Verification functions.

This highlights the importance of the sound identification of the safety properties that must be
checked by the Safety Bag. This could not be as generic as the developed safety components.
However, starting from this study, further work has been engaged to clarify and make more
systematic and sound the process of elicitation, refinement and allocation of dependability and
safety properties in complex critical autonomous systems.

In a real on-board space system, due to the limitation in power processing and in memory, the
number of critical telecommands to check should be certainly limited as well as the complexity of
the functions. It is then very important to identify the main cause of potential faults in the system.
With sufficient processing and memory capacity, the Transition function could include an accurate
model-based representation of the system.

Though developed and experimented in the context of space systems, resulting in some specific
implementation characteristics, many similarities were found and common issues addressed. The
proposed concepts and a large part of the solutions down to the component level could be fruitfully
extended towards embedded real time software systems in other domains.

8 References

[1] SPAAS project (Software Product Assurance for Autonomy on-board Spacecraft). Contract ESTEC
14898/01/NL/JA. SPAAS technical notes available at: ftp://ftp.estec.esa.nl/pub/tos-qq/qqs/SPAAS/StudyOutputs

[2] J. Fox and S. Das, Safe and Sound - Artificial Intelligence in Hazardous Applications, AIAA Press / The MIT
Press, 2000.

[3] RIACS Workshop on the Verification and Validation of Autonomous and Adaptive Systems, 5-7 Dec. 2000,
Asilomar Conference Center, Pacific Grove, CA: http://ase.arc.nasa.gov/vv2000/

[4] European Cooperation for Space Standardization (ECSS). Space Engineering — Software, ECSS-E-40B (draft
1), 29-5-2002, Space Product Assurance — Software Product Assurance, ECSS-Q-80B, 10-10-2003.

[5] D. Powell & P. Thévenod-Fosse, “Dependability Issues in AI-Based Autonomous Systems for Space
Applications”, 2nd IARP/IEEE-RAS Joint Workshop on Technical Challenge for Dependable Robots in Human
Environments, October 7-8 2002, Toulouse, France, pp.163-177.

[6] P. Klein, “The Safety Bag Expert System in the Electronic Railway Interlocking System ELEKTRA”, Expert
Systems with Applications, 3 (4), pp.499-560, 1991.

