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Abstract

There is an increasing need for advanced autonomy in complex embedded real-time sys-
tems such as robots, satellites, or UAVs. Still, the growing complexity of the decision capabilities
of these systems raises a major problem: how to prove that the system is not going to end in a
dangerous state (for itself or for humans)? How to guarantee that the robot will not grab a sam-
ple on the ground with its arm, while moving (which could supposedly break the arm)? How to
make sure that the satellite RCS jets are not fired when the camera lens protection is off? How
do we make sure that a service robot for elderly people is not moving faster than 20cm.s−1?

This paper presents some recent developments of the LAAS architecture for autonomous
systems. In particular, we specify the role of the Execution Control level of this architecture.
This level has a fault protection role with respect to the commands issued by the decisional
level, which are transmitted to the system (through the functional level). It acts as a real-time
“safety bag”1, to make sure that the commands issued are consistent with the current state of
the system and with a formal model of the acceptable states. To implement this component, we
present a new approach and a new tool inspired by the model checking domain. We introduce
a new language (EXoGEN) to specify the model of acceptable and required states of the system
(valid contexts for requests to functional modules and resources usage). This language is
compiled offline in an OBDD (Ordered Binary Decision Diagram) like structure which is then
used online to check the specified constraints in real-time. This tool is seamlessly integrated in
the LAAS architecture and relies on the other tools used to build autonomous systems (Gen

oM,
OpenPRS, etc). We have deployed it on a number of robotics platforms (ATRV and XR4000
robots). We show that such an approach allows us to improve the runtime dependability of the
system at a minimal acceptable cost (compared to the possible loss of the complete system),
but could also be extended to check more complex temporal properties of the system off line.
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1 Introduction

Advanced robots or satellites have an increasing need for a high level autonomy while performing
in a hard real time environment. However, this raises a major non trivial problem: most com-
plex autonomous systems, which operate with a minimal human intervention and in a highly non
deterministic environment are hard to validate. Nevertheless, these systems must be safe and
dependable (e.g. avoid non nominal and unknown system states), to avoid financial loss and/or
to avoid disturbing/harming humans. These two requirements (high level autonomy and depend-
ability) may appear contradictory or at least hard to satisfy together. Indeed, how can we be

1This term was first introduced in this paper [1] and is used by the Dependable Computing community to talk about
systems which have an ultimate fault protection mechanism such as the one presented here.



sure that a high level autonomous system with rather strong decisional capabilities will not take a
decision that could threaten the mission and/or the humans?

An initial response is to use a safe decisional component (e.g. a high level planner giving
safe plans). However, in most autonomous systems the decisional component cannot deal with
a complete system model. Indeed such a large model will render the planner unusable. Taking
into account the model, the environment and the goals would lead to such a huge state space
that no search would be able to extract a plan in a reasonable time. So we have to stick with
a planning model which is “limited” to remain “tractable”, and provide other means to check the
system dependability (w.r.t. the decisional aspect). As a limit to the system planning abilities,
we may rely on predefined human written plans or procedures which are in most cases hard to
validate (except by test) and whose concurrent execution may lead to unexpected outcomes.

The LAAS2 architecture, described in section 2, proposes a solution with an execution con-
troller to address this problem. The execution controller role will be presented in section 3. While
we introduce a solution in our architecture: the Request & Resource Checker (R2C) in section 4.
Section 5 focuses on the EXoGEN tool used to automatically generate the R2C from the system
constraint specifications. We will conclude with some experimental results and on the perspec-
tives offered by this work.

2 The LAAS Architecture

The LAAS architecture [2] was originally designed for autonomous mobile robots. This architec-
ture remains fairly general and is supported by a consistently integrated set of tools and methodol-
ogy, in order to properly design, easily integrate, test and validate a complex autonomous system.

As shown on figure 1, it has three levels, with different temporal constraints and manipulating
different data representations. From the top to the bottom, the levels are:

Figure 1: The LAAS Architecture.

• A decision level: This higher level includes the deliberative capabilities such as, but not
limited to: producing task plans, recognizing situations, faults detections, etc. It embeds
at least a supervisor/executive [3], which is connected to the underlying level, to which it
sends requests that will ultimately initiate actions and start treatments. It is responsible for

2LAAS: LAAS Architecture for Autonomous Systems



supervising plans or procedures execution while being at the same time reactive to events
from the underlying level and commands from the operator. Then according to particular
applications it may integrate other more complex deliberation capabilities, which are called
by the supervisor/executive when necessary. The temporal properties of the supervisor are
such that one guarantees the reaction time of the supervisor (i.e. the time elapsed before it
sees an event), but not much can be said for other decisional components.

• An execution control level: Just below the decisional level, the Requests and Resources
Checker (R2C) checks the requests sent from above to the functional level, as well as the
resources usage. It is synchronous with the underlying functional modules, in the sense
that it sees all the requests sent to them, and all the reports coming back from them. It
acts as a filter which allows or disallows requests to pass, according to the current state
of the system (which is built online from the past requests and past replies) and according
to a formal model of allowed and forbidden states of the functional system. The temporal
requirements of this level are hard real-time. This is the level on which this paper focuses.

• A functional level: It includes all the basic built-in robot action and perception capabilities.
These processing functions and control loops (image processing, motion control, . . . ) are
encapsulated into controllable communicating modules [4]. Each module provides a num-
ber of services and treatments available through requests sent to it. Upon completion or
abnormal termination, reports (with status) are sent back to the requester. Note that mod-
ules are fully controlled from the decisional level through the R2C. Modules also maintain
so called “posters”: data produced by the modules, such as the current position and speed
(from the locomotion module) or current trajectory (from the motion planning module) which
can be seen by other modules and the levels above. The temporal requirements of the mod-
ules depend on the type of treatments they perform. Modules running servo loop (which
have to be ran at precise rate and interval without any lag) will have a higher temporal
requirement than a motion planner, or a localization algorithm.

This architecture naturally relies on several representations, programming paradigms and pro-
cessing approaches meeting the precise requirements specified for each level. We developed
proper tools to meet these specifications and to implement each level of the architecture: IXTET a
temporal planner, OpenPRS a procedural system for tasks refinement and supervision/executive,
and Gen

oM for the specification and integration of modules at that level. These various tools share
the same namespace (i.e. the name of the modules, requests, arguments and posters).

3 Execution Control

The execution control has a critical role in the LAAS architecture. Considering that the interactions
between the functional and the decisional levels are somewhat difficult to validate, the execution
control acts as an intermediate component which controls online the system behavior and avoids
inconsistent system states. Still, we need to specify what has to be taken into account to ensure
that this component will effectively control the system behavior and keep the system in a nominal
state.

During normal operation, the decisional level commands the functional level. The functional
level is deployed using a strongly modular approach which helps developers to easily add new
functionalities to the system. As a result, none of the modules has a real knowledge of other
modules existence and behavior. So if each functional module can (and usually does) check its
own status, behavior and its inputs/outputs, still it cannot make any assumption on the interactions
it will have with other modules (a particular module may be responsible for running the robot at a
particular speed provided by another module, but it has no idea what an acceptable speed is in
this particular context). So bluntly said, the functional modules alone cannot provide inter-module
conflict detection nor can they check for conflicts coming from the decisional level.



The execution control is the solution we propose to address this problem. It performs this
conflict detection by enforcing some of the system constraints.

3.1 Execution control role

The development of the execution control level is based on a simple yet efficient general principle:

If we are not able to validate neither the functional level interactions, nor the inter-
actions between the decisional and functional levels, then we can insert a simple
synchronous component which will monitor the system state evolution in real time
and check that this evolution is conform to a formal model of acceptable states.

This component must satisfy the following requirements:

• Observability The component must have the ability to monitor and catch all events that may
lead or participate to a system inconsistency. Indeed, the execution control requires this
information to properly monitor the evolution of the system..

• Controllability The execution control must be able to control the system (i.e. block or deny
commands) sufficiently to avoid inconsistent states. If this requirement is not respected
then there is no way to avoid these states.

• Synchronous and Bounded cycle time. The component must act under a synchronous
hypothesis (i.e. computation and communication take virtually no time). Apart from avoiding
asynchronous formalism difficulties, this allows us to have a cleaner formal model of the
system behavior and states transition. In practice, this implies that the system will run as
a loop with a bounded cycling time, which will also offer some guarantees on the overall
system reactivity.

• Verifiability. The execution control component has to offer a formalism and a representation
that allow the developer to check if it safely controls the system behavior.

The execution control component acts has a “safety bag” [1]: it captures all the incoming
events (request of services, end of services, . . . ) and, according to some specified constraints,
enforces the resulting state validity. This may results in requests being rejected or killed.

3.2 A simple example

Let consider an autonomous robot which is able to move with a maximum speed of 2m.s−1 and
which has three ways to localize:

• one based on stereo pixels tracking,

• one based on GPS.

• one based on odometry.

As shown on figure 2, the functional level is composed of 8 modules:

• Wheel Control: controls the wheel speed and orientation. The input of this module is the
speeds (linear and angular) taken from the Path Planning module. It also produces the
position data using odometry.

• Pan/Tilt: controls the camera pan/tilt position.

• GPS : gives data retrieved from GPS.This module produces two data: the position and the
GPS reception level.

• Camera: is used to take images from the stereo bench.



Figure 2: Example of a robot architecture

• Stereo: computes a stereo correlation image. It exports a local 3D representation of the en-
vironment and a position. This module may be started or stopped. Indeed this functionality
is complex and uses a lot of CPU resource so it can be useful to stop it when not used.

• 3D Map: manages a 3D map of the environment according to the data retrieved from Stereo.

• Localization: acts as a selector between the 3 modules producing a position. The decisional
level controls the position mode which is being used.

• Path Planning: computes a path based on 3D Map to reach a given goal position. It offers
one service which takes the goal position as an argument. This service terminates when
the robot has reached the goal or when an error occurs.

The system is controlled by the decisional level. This level controls the pan/tilt camera position,
starts or stops the Stereo service, changes the mode of the Localization module and may give a
goal position to Path Planning. It also reads the GPS reception level.

Here are the constraints we want to enforce:

• The localization must be valid. We do not want to take the position from Stereo when it is
stopped or from GPS when reception level is not sufficient.

• If the localization is not valid, we are not able to execute path planning. Thus we should
reject requests to move to a new goal.

In this example the role of the execution control level is to guarantee the satisfaction of these
constraints.

3.3 Similar works

Many of the concerns raised in the previous section are not new, and some robotics architectures
address them in one way or another.

Indeed, some of the requirements presented above were clearly fulfilled by a previous version
of the LAAS execution control layer based on KHEOPS [5]. KHEOPS is a tool for checking a



set of propositional rules in real-time. A KHEOPS program is thus a set of production rules
(condition(s) → action(s)), from which a decision tree is built. The main advantage of such a
representation is the guaranty of a maximum evaluation time (corresponding to the decision DAG3

depth). However, the KHEOPS language is not adapted to resources checking and appears to
be quite cumbersome to use.

Another interesting approach to prove various formal properties of robotics system is the OR-
CCAD system[6]. This development environment, based on the ESTEREL [7] language provides
some extensions to specify robots “tasks” and “procedures”. However, this approach does not
address architecture with advanced decisional level such as planners.

In [8, 9], the authors present another work related to synchronous language which has some
similarities with the work presented here. The objective is also to develop an execution control
system with formal checking tools and a user-friendly language. This system represents requests
at some abstraction level (no direct representation of arguments nor returned values). This devel-
opment environment gives the possibility to validate the resulting automata via model-checking
techniques (with SIGALI, a SIGNAL extension).

In [10], the authors present the CIRCA SSP planner for hard real-time controllers. This plan-
ner synthesizes off-line controllers from a domain description (preconditions, postconditions and
deadlines of tasks). It can then deduce the corresponding timed automaton to control the system
on-line, with respect to these constraints. This automaton can be formally validated with model
checking techniques.

In [11] the authors present a system which allows the translation from MPL (Model-based
Processing Language) and TDL (Task Description Language) to SMV a symbolic model checker
language. Compared to our approach, this system seems to be more designed for the high level
specification of the decisional level, while our approach focuses on the online checking of the
outcomes at the decisional level.

Another approach to consider is IDEA presented in [12]. It relies on two main ideas: (1)
most components can be seen as agents which share a common virtual machine defining their
reactive planning behavior (planning here has to be taken in a wide sense);(2) all these agents
share parts of a global temporal model which specifies the internal “behavior” of the agent, as well
as the communication between agents. The time-lines representation of constraints supporting
this architecture seems to be a good model for a formal validation of the system.

4 The Request & Resource Checker

We present now our execution control component. This component called the Request & Re-
source Checker (R2C, see figure 3), acts as follows:

• Events capture: The R2C captures all the events that may change the system state.

• Update of system state database: According to these events the R2C updates its system
state representation.

• State Checking: It checks the requested state validity. If it is not valid, then it deduces
actions to do to keep the system in a safe state.

• Actions launching: It executes deduced actions and sends reports to concerned compo-
nents. These reports are informations about R2C deductions (rejection, . . . ) or external
events (end of service, error, . . . ).

The main component of R2C is the state checker. This component encodes the constraints of
the system. To specify these constraints we have defined a language named EXoGEN.

3DAG: Directed Acyclic Graph.



Figure 3: The Request & Resource Checker

5 Controller Synthesis

EXoGEN is a compiler which generates the R2C corresponding to a set of constraints specified for
one particular system. These constraints are expressed thanks to a set of predicates:

• Service past: It tests if the last service instance correctly terminated satisfies the con-
straints given for its inputs and returned values.

• Precedence relation between services: Tests if the last instance of one service has finished
before the last instance of another one.

• Resource value test: It checks if a resource value is in one particular domain. Generally
resources are linked to one external data, for example battery level may be exported by one
module, but we can also specify “virtual” resources. A virtual resource may be the cameras
with a capacity of 1. We distinguish two kinds of resources:

1. shared resources: they correspond to resources which are used during service exe-
cution and replenished at the end of this service.

2. depletable resources: these resources are just consumed except for special services
replenishing them explicitly.

• Instance currently running: It tests if one service instance is currently running. Instance
arguments have to satisfy a specified constraint.

These predicates are used to describe contexts that block or are necessary for the execution
of a particular service. Users can also specify if these contexts may be checked as a precondition
or as an invariant.

Following is an example of an EXoGEN specification for the goto service of the PathPlanning
module :



request PathPlanning_goto(?goal) {

fail {

maintain:

past(Localization_set(?mode) with ?mode==STEREO) &&

( !past(Stereo_start()) || [Stereo_start()<Stereo_stop()] );

past(Localization_set(?mode) with ?mode==GPS) && GPS_status in [0,0.1];

}

}
In this example the goto service cannot run in 2 cases:

1. the Localization mode is STEREO when the Stereo was never started or the last time it was
started precedes the last time it was stopped.

2. the Localization mode is GPS when the GPS reception level is less than 10%.

These two constraints are checked as invariant (maintain:), so if one of these becomes true
then all the running instances of goto must be stopped.

5.1 From constraints to control

The constraint specification is used by EXoGEN to generate the corresponding state checker. This
component is based on a structure quite similar to OBDDs4 [13] named OCRD5[14]. The choice
of an OBDD like structure was driven by the following properties:

• OBDDs are well known to represent first order logic formulas in a canonical and compact
form. They are often used to represent graph transitions.

• The resulting data structure is a Directed Acyclic Graph (DAG) so the traversal time is
bounded and linked to the graph depth.

• OBDDs are frequently used in model-checking which is an interesting technique to formally
validate a model[15].

OCRDs are directed graph quite similar to OBDDs.Terminal leaves of the graph correspond to
true (>) or false (⊥) results. Each node is a branching test for one variable state: one branch is
fired when the result of the test is true and the other when it is false (i.e. each node is a kind of if
then else). OCRD construction is quite similar to OBBD’s one (see [16]). The main difference
relies in the fact that nodes are not first order logic predicates. In an OCRD a node has the
following form:

pred(?v1 . . .?vn) with cstr(?vi1 . . .?vim
)

with:
pred a predicate.
?v1...n variables linked to pred.

cstr(?vi1...m
) constraint on a subset of variables of pred, this constraint is a fixed hypercube.

To keep OBDDs properties we have to be sure that each OCRDs node does not depend on
another one. Thus the following property has to be satisfied:

∀pred,∀(cstr1, cstr2) : cstr1 6= cstr2 →
(
@(?v1...n) : cstr1(?v1...n) ∧ cstr1(?v1...n)

)
Where cstr1 and cstr2 are constraints applied to pred in the set of nodes of the OCRD.
This property is maintained during the construction of the OCRD. The compiler splits domains

of each predicates into a partition when needed.

4OBDD: Ordered Binary Decision Diagram
5OCRD: Ordered Constrained Rule Diagram



Given this property, each node of the OCRD corresponds to a subset of the state space
of pred. The resulting OCRD is equivalent to an OBDD where each variable corresponds to a
partition of states for each predicate.

The OCRD constructed by EXoGEN is the general system formula expressing all the valid
transitions (i.e. to valid states). EXoGEN then extracts from this formula a component which role
is to maintain this formula true (>) taking into account controllable events and the uncontrollable
predicates (incoming events) .

The controllable predicates are the expression of system controllability. They represent the
actions the R2C can use to avoid inconsistent state. If there is no controllable predicate then it is
impossible to control the system.

The OCRD computed from the EXoGEN code given in the previous section is illustrated in figure
4. We can see that uncontrollable predicates are checked first – such a node order simplifies the
compilation – these predicates are representing current state of the system and incoming events.
The controllable predicates are the decisions made by the state checker to maintain the system
in a good state. The state checker will just try to maintain this formula true setting controllable
predicates values according to this.

gps_status in [0 - 0.1]

reject(PathPlanning_goto(?g))

kill(PathPlanning_goto(?g))

T

T

Legend :

uncontrolable

controlable
last(Stereo_start()) last(Stereo_start())

last(Localization_set(?m) 
with ?m=GPS)

Stereo_start()→Stereo_Stop()

last(Localization_set(?m) 
with ?m=GPS)

last(Localization_set(?m) 
with ?m=STEREO)

last(Localization_set(?m) 
with ?m=STEREO)

Figure 4: resulting OCRD from example

Figure 5: The Dala robot

6 Experimental results

We have implemented and integrated the R2C on the LAAS architecture and the results are quite
encouraging. On our ATRV robot, Dala (see figure 5), we have specified 13 context constraints
expressing the functional level modules dependencies and conflicts. The resulting OCRD has a
maximum depth of 22 with a total size of 399 nodes.

The fault injection of conflicting situations is properly detected and taken care of. The services
instances leading to an inconsistent state are properly rejected or killed and the functional level
remains in the set of acceptable states. Compiling and building this execution controller took less



than 0.10s6.
An interesting result is the fact that the R2C helped us detect one faulty behavior in one of

the decisional level components. The error, due to a coding mistake, was avoided and reported
to this component. Unfortunately, as of today, this component has not been programmed to take
into account this kind of messages, although it is rather simple to consider these messages as
a service failure and to react accordingly. The integration of R2C does not have any noticeable
impact on the global reactivity of the system and is able to deduce its action with a maximum time
of 300 µs.

7 Conclusion & Future Works

In this paper, we first justify why one needs execution control in autonomous systems, and show
that the LAAS architecture for autonomous systems was originally designed taking this concern
into account.

We present the R2C, together with its development tool EXoGEN, a component which offers a
simple, but yet powerful solution to the execution control problem. This component was designed
to satisfy the specifications of an execution control component: observability and controllability of
the functional level, synchronous and real-time, verifiability of the model used.

The R2C is supported by a data structure similar to OBDD, named OCRD, which encodes the
acceptable states of the system. The resulting diagram has a limited depth and thus provides a
real time guarantee on its maximum evaluation time. Using an approach equivalent to OBDD, we
should be able to use model checking tools to validate some more complex temporal properties
of the R2C, thus offering some more formal validations of the model.

The R2C is currently integrated in the LAAS architecture and our first tests show that it per-
forms efficiently on our mobile robots. Still, the current version does not have a complete view
on the state change as it just captures events coming from the control flow of the system (re-
quests/reports) and not the data exchanged by data flow (posters reading). We are currently
adding this feature to the latest version of the R2C. Another possible extension is to enhance the
decisional components to take into account the reports coming from the R2C, i.e. how to recover
from a rejected or killed request. Last, we plan to investigate existing model checkers approaches
(based on OBDD) to see if they can bring some new advantages to this system.
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