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Autonomous systems are starting to appear in space explo-
ration, elderly care and domestic service; they are particu-
larly attractive for such applications because their advanced
decisional mechanisms allow them to execute complex mis-
sions in uncertain environments. However, systems embedding
such mechanisms simultaneously raise new concerns regarding
their dependability. We aim in this paper to present these
concerns and suggest possible ways to resolve them. We
address dependability as a whole, but focus specifically on
fault tolerance. We present some particularities of autonomous
systems and discuss the dependability mechanisms that are
currently employed. We then concentrate on the dependability
concerns raised by decisional mechanisms and consider the
introduction and assessment of appropriate fault tolerance
mechanisms.

INTRODUCTION

Real world experiments inautonomous systemsappear in
such domains as space exploration, elderly care, museum tour
guidance and personal service. These are critical fields of
application, as a system failure may result in catastrophic
consequences regarding human lives or in economic terms.
Moreover, autonomous systems might be particularly danger-
ous as their actions are not directly controlled by a human
operator. Thus arises a need fordependability, that is a justified
trust that the system will appropriately perform its mission
and not cause catastrophes. One of dependability means, fault
tolerance, considers in particular that faults are inevitable in
any complex system, and aims to make their consequences
negligible. This paper studies autonomous system particular-
ities regarding dependability, and discusses how to improve
fault tolerance in such systems.

We first describe particularities of autonomous systems in
comparison with “classic” computing systems, that is the
notion of robustness (somewhat similar to fault tolerance)
and the use of decisional mechanisms. The second section
presents a detailed state of the art on dependability and
robustness mechanisms in autonomous systems. We then give
conclusions and recommendations for the development of
autonomous systems, and present future directions: possible
fault tolerant techniques for the decisional mechanisms of
autonomous systems, and an experimental framework based
on simulation and fault injection for assessing their efficiency.

I. PARTICULARITIES OF AUTONOMOUS SYSTEMS

This section presents the main particularities of autonomous
systems in comparison with classic computing system. We first
enunciate the distinction that we make between robustness
and fault tolerance, and then introduce notions specific to
decisional mechanisms.

A. Robustness and fault tolerance

The concept of robustness appeared in the robotic field as an
answer to the large variability of execution contexts resulting
from robot operation in an open environment. If we consider
that faults are just another cause of uncertainty then robustness
might be considered as a superset of fault tolerance. However,
a useful distinction between robustness and fault tolerance can
be made by restricting the use of the former to the tolerance
of adverse situationsnot due to faults. We therefore adopt the
following definitions in the context of autonomous systems
(Figure 1) [24]:

• Robustnessis the delivery of a correct service in adverse
situations arising due to an uncertain system environment
(such as an unexpected obstacle or a change in lighting
condition affecting optical sensors).

• Fault toleranceis the delivery of a correct service despite
faults affecting system resources (such as a flat tire, a
sensor malfunction or a software fault).
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Figure 1: Robustness vs. fault tolerance

A remark may be added about the service provided by
the system. Here, we consider that acorrect serviceis a
behavior in accordance with the intended system function,
from a user point of view; it is definedbefore executionand is
embodied in the system specifications, which determines the
goals to be achieved in well-defined situations. A dependable
system should thus provide a correct service regarding nominal
situations and explicitly-specified adverse situations.

However, an autonomous system is often required to func-
tion in an open environment, where operating conditions can
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not all be determined in advance. When faced with unexpected
adverse situations a correct service cannot be guaranteed.
However, the user may judgeafter executionthat, given
the unexpected situation that the system had to face, the
service, while not correct with respect to the specification, was
neverthelessacceptable. An acceptable service is generally
less successful than a correct service as the system had to
deal with unexpected adverse situations (it may achieve less
goals, or only part of the goals).

B. Decisional Mechanisms

Decisional mechanisms are central to autonomous systems,
as they embody the ability to select and choose actions to
achieve specified objectives. This section presents decisional
mechanisms and proposes a classification of possible faults
affecting those mechanisms.

1) Characterization of decisional mechanisms:A deci-
sional mechanism is composed ofknowledgespecific to the
system’s domain of application (such as heuristics or a model
of the environment) and aninference mechanismused to solve
problems by manipulating this knowledge. Ideally, the infer-
ence mechanism is independent from the application and can
be re-used in a different one with new appropriate knowledge.
In practice however, knowledge and inference mechanism are
often hard to dissociate; for example heuristics in planners or
weights in neural networks are intrinsic parts of the inference
mechanism.

Applied to an ideal faultless knowledge base, an inference
mechanism can be characterized by three main properties:
soundness, completeness and tractability [29]:

• Soundnessindicates that any conclusion raised by the
inference mechanism is correct.

• Completenessindicates that the inference mechanism will
eventually produce any true conclusion.

• Tractability characterizes the complexity of the inference
mechanism: it indicates whether the inference mechanism
can solve a problem in polynomial time and space, that
is whether the time and memory space needed to find a
solution can be defined as a polynomial function of the
problem size.

Inference mechanisms currently used in autonomous sys-
tems are often sound and complete, but intractable. In prac-
tice, completeness is often relinquished through the use of
heuristics, in order to improve tractability, and consequently
the system performance.

2) Fault classification in decisional mechanisms:Deci-
sional mechanisms introduce new faults in comparison to
classic computing systems. From the risks of error presented
in [5] and [13] we have identifiedinternal faultsin a decisional
mechanism, andinteraction faultsbetween a decisional mech-
anism and another component or system (such as a human
operator or another decisional mechanism).

a) Internal faults: Internal faults in a decisional mecha-
nism may affect either the knowledge or the inference mech-
anism (Figure 2) [23].
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Figure 2: Internal faults in decisional mechanisms

Faults in theinference mechanismmay be introduced during
development of the system, either as a design fault (for exam-
ple if the decisional mechanism is not adapted to the system
function, or if its principle is flawed) or as a programming
fault (such as a typing or algorithm error).

Faults in the systemknowledgemay be introduced either
during development (design or programming) or in operation.
Design faults may be either an explicitly-specified adverse
situation that has not been covered by the developers (such
as a missing procedure or an action needed to treat the
adverse situation, or missing example sets used in learning for
neural networks), or an imperfection in the choice criterion
that possibly causes wrong conclusions to be drawn by the
inference mechanism (such as faults in heuristics, or facts
used for decision that are wrong in particular situations).
Knowledge programming faults include both missing and
faulty information in the knowledge of the decisional mech-
anism. Operational faults are incorrect dynamic information
in the knowledge of the decisional mechanism, such as the
current state of the system or information learned from the
environment; these faults may be caused for example by sensor
failures or imperfections, or undetected memory corruption.

b) Interaction faults: The main faults of decisional
mechanisms due to interaction with other components or
systems aremismatchesin the exchanged information. Such
faults are not specific to decisional mechanisms and can be
classified in several categories [18].

Semantic mismatchesare development faults that arise when
different languages are used by the communicating compo-
nents, and lead to information loss or modification. They are
of particular concern in autonomous systems, as in practice
semantic mismatches are common between different compo-
nents. The three-layer type of architecture for example is built
from components considering different levels of abstraction,
each generally using a distinct model of the system and the
environment. The executive component often lacks a global
view of the system to better decompose plans, whereas the
upper decisional mechanism does not possess all the relevant
information for dealing with error reports.

Other types of mismatch (including physical, syntactical,
and temporal mismatches) are similar to other computing
systems, and can also be causes of information loss or modi-
fication.
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At a different level, there are also risks of interactions faults
between a decisional mechanism and a human operator:

• Misguided optimismin the system capabilities: the user
is overconfident regarding the decisions taken by the
decisional mechanism; for example, the results given may
be very precise but wrong.

• Incredulity in the system capabilities: the user has no
confidence regarding the decisions taken by the decisional
mechanism; for example, since he does not understand
the reasoning process leading to a given decision.

II. STATE OF THE ART

This section presents a state of the art concerning depend-
ability and robustness mechanisms in autonomous systems.
We cover first fault prevention and fault removal (both encom-
passed in the notion of fault avoidance), then fault forecasting,
fault tolerance and, finally, robustness.

A. Fault avoidance

Fault avoidance aims to produce a system containing as few
faults as possible. It encompasses fault prevention, that is the
means to prevent the introduction or occurrence of faults, and
fault removal, that is the means to reduce the number and
severity of faults.

1) Fault prevention:Fault prevention in autonomous sys-
tems is mainly implemented through the modularity of soft-
ware components and the use of appropriate development
tools.

Motivations for the modularity of software components
are threefold: to decompose a complex system into simpler
independent components, to capitalize generic structures or
algorithm libraries, and to ease communication and scheduling
between the components. Modularity thus prevent faults first
by simplifying the development of each component (although
it raises the problem of the component integration), and
second by allowing components to be considered somewhat
independently during development and testing. Modularity
appears in generic architectures such as LAAS [1], RAX [28],
CLARAty [34] or IDEA [27], but also in several components
of these architectures.

Development toolsgenerally include libraries of generic
components, which can be instantiated to adapt to a particular
piece of hardware or algorithm. They automatically generate
part of the component code, accelerating the development
process and reducing the risks of programming faults. De-
velopment tools are often used to develop functional layers
for autonomous systems, such as the Genom modules of the
LAAS architecture, or the ControlShell [32], ORCCAD [6] or
SIGNAL[25] environments.

2) Fault Removal: Two fault removal mechanisms are
particularly used in autonomous systems: tests and formal
checking.

Simulation and operatingtestsare essential to the develop-
ment of critical computing systems. In autonomous systems,
however, their role is often limited to debugging rather than
proving a thorough validation. Especially in the case of
research platforms, developers check correct execution of the

system for just a few situations. Intensive testing was however
been carried out on the RAX architecture for the DS1 project
[4]: six test beds were implemented throughout the devel-
opment process, incorporating 600 tests. The authors of [4]
underline the relevance of intensive testing, but acknowledge
particular difficulties regarding autonomous systems, notably
the problem of defining suitable test oracles.

Formal checkingcan be used to check properties of software
component executions, such as safety or liveliness. However,
it generally depends upon rigorous conditions, such as syn-
chronism, and must be considered early in the development
process. The ORCCAD and SIGNAL environments implement
formal checking procedures.

B. Fault forecasting

Fault forecasting aims to estimate the present number, the
future incidence, and the likely consequences of faults [3].
There are apparently few studies in fault forecasting for
autonomous systems in the literature.

[7] presents studies on the failure of indoor and outdoor
robots (some of which are not autonomous). Thirteen robots
were observed for nearly two years, displaying an MTBF
(Mean Time Between Failure) of about 8 hours, and a reli-
ability of less than 50%. Outdoor robots were seen to fail
more often than indoor ones (maybe because of the more
demanding outdoor environment), and while hardware faults
were the most common cause of failures (42%), the control
systems (including the operating systems) were also significant
sources of failures (29%).

[33] presents the implementation of the autonomous mu-
seum tour guide RoboX9 and a study of its failures during
five months of operation. The MTBF reached and stayed at
around 4.6 hours after four weeks of operation; 96% of failures
where caused by the software components (80% due to the
non-critical human interaction process, and 16% due to the
critical navigation and localization process).

C. Fault tolerance

Fault tolerance is rarely explicitly mentioned in literature
on autonomous systems. Although some techniques (such as
temporal control by a watchdog, or positioning the system in
a safe state after detection of an error) are quite common, we
believe that their use is far from systematic, partly because
most autonomous systems are still research platforms.

1) Error detection: Error detection in autonomous sys-
tems is mainly implemented by timing checks, reasonableness
checks, safety-bag checks, and model-based diagnosis moni-
toring.

Timing checksare implemented by watchdogs in the
RoboX9 autonomous system [33]. They supervise the live-
ness of critical functions such as speed monitoring, obstacle
avoidance, bumpers and laser sensors. By their very principle,
they detect only timing errors, not value errors.

Reasonableness checksverify, for example, that a state vari-
able of the system lies within a specified interval of possible
values. RoboX9 uses a reasonableness check to monitor the
robot speed.
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Safety-bag checks[20] consist in intercepting and blocking
the system commands if they do not respect a set of safety
properties specified during development. The R2C component
of the LAAS architecture [30] acts as such a safety-bag.

Monitoring for diagnosisis mostly used to detect hardware
faults (such as a flat tire, or an underspeed motor) rather
than software faults. Diagnosis monitoring is implemented by
checking system behavior against a mathematical model: for
example, the MIR component of the RAX architecture detects
the presence of faults by comparing its sensor values with
theoretical values from the model.

2) System recovery:System recovery in autonomous sys-
tems is mainly implemented by error containment, positioning
in a safe state, and hardware and software reconfiguration.

Error containment(to limit error propagation) is imple-
mented in RoboX9 through the use of dedicated processors.
One processor executes critical tasks (such as localization and
navigation) whereas another one executes less fundamental
and less thoroughly tested interaction tasks (such as the user
interface and the face-tracking function).

Positioning in a safe statemay be executed after a critical
component failure or while executing a time-consumng re-
covery action, such as re-planning. For example, the RoboX9
system positions itself in a safe state when a critical subsystem
fails, and the Care-O-Bot system [16] stops when a platform
fault causes it to collide with an obstacle or person. Positioning
in a safe state can also be executed after activation of a safety-
bag, by blocking or halting activities which invalidate the
safety properties.

Hardware reconfigurationis performed in the RAX ar-
chitecture through functional diversification of the hardware
components: when a hardware failure is detected, the MIR
component seeks a new system configuration able to fulfill
the functions of the faulty component.

Software reconfigurationcan be executed either by switch-
ing between different execution modes or by corrective main-
tenance (which can be seen as an ultimate form of fault-
tolerance) through the use of a patch. Switching between
different execution modes may be realized through exception
handling or through switching to an alternative decomposition
of a task into elementary actions (see “modalities” below in
section II-D.2.b). Patches have been implemented to recover
the Martian roversPathfinderandSojourneras they failed re-
spectively because of priority and RAM management failures.

D. Robustness

Robustness in autonomous systems may be implemented in
two ways:

• Systematic treatment applied in all situations, through
observation of the current situation and selection of
actions to be taken.

• Specific treatment applied only to adverse situations,
through explicit detection of the adverse situation and
triggering of an appropriate contingency procedure.

1) Observation and action selection:Systematic treatment
by observation and action selection is similar to the fault tol-
erance technique of fault masking [3]. This approach exploits

the massive redundancy resulting from the combinations and
permutations of possible actions that can be carried out in any
given situation. Thus, should an adverse situation prevent a
subset of actions, it is likely that a sequence of alternate actions
exists that allows the system to achieve its objectives. This
approach to robustness is mainly implemented by planning
and learning.

Planning gives an autonomous system the ability to select
sequences of actions to achieve a set of objectives from
an initial situation. It implicitly deals with environment un-
certainties first by covering a large number of situations,
which would be extremely fastidious to implement through
imperative programming, and second, by tolerating situations
that may not have been envisaged during system design, but
which are compatible with its knowledge.

In CIRCA [15], this approach is taken one step further
by taking into account prior knowledge about dangerous
situations that may cause system failure. This prior knowledge
is expressed as additional constraints input to the planner in
order to ensure that the produced plans avoid such situations.

Least-commitment planningalso aims to facilitate system-
atic treatment of adverse situations caused by environment
uncertainties. It typically resolves a CSP (Constraint Satis-
faction Problem) to minimally constrain the plan produced,
and thereby provide temporal and resource flexibility during
the plan execution. Adverse situations that were unknown
while planning may thus be tolerated. The IxTeT planner from
LAAS and the planner from RAX and IDEA implement least-
commitment planning.

Similarly to planning,learningoffers a systematic treatment
of adverse situations by covering a larger number of situations
than could be covered by explicit programming.

2) Detection and contingency procedure triggering:Spe-
cific treatment by detection and contingency procedure trigger-
ing is similar to the fault tolerance technique of error detection
and recovery, as it aims to treat an adverse situation detected
beforehand.

a) Detection: Detection is mainly implemented by exe-
cution control, situation recognition, and diagnosis.

Execution controlsupervises the execution of plans pro-
duced by the planner. A plan is generally developed under
the condition that each of its actions will execute correctly;
failure of an action thus indicates the appearance of an adverse
situation that has not been taken into consideration by the plan-
ner. Execution control is the most used mechanism to detect
adverse situations in the LAAS and CLARAty architectures.

Situation recognitionuses an event chronicle to identify the
current situation of the system and its environment among sev-
eral generic models specified or learned during development.
Work on situation recognition as a detection mechanism and
its application may be found in [10] and [9].

Monitoring of the system fordiagnosisis generally used to
reveal physical faults affecting the system hardware. However,
diagnosis mechanisms may also ascertain the situation of the
system and its environment: in [26] the system learns a Markov
Decision Process (MDP) to diagnose its situation, matching
values of observable state variables to each type of possible
situation.
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b) Contingency procedure execution:Specific treatment
of an adverse situation is achieved in planning through re-
planning and plan repair, or in execution control through task
retry and modality switching.

Re-planningconsists in developing a new plan from the
current situation and the objectives yet to be achieved by
the system, explicitly taking into account the adverse circum-
stances that caused the failure of the previous plan. Positioning
the system in a safe state may often precede a re-planning.
Planners in the LAAS and CIRCA [15] architectures use re-
planning.

Plan repair shares the same objectives as re-planning, but
seeks a faster solution under the assumption that part of the
previous plan may still be valid; execution of this valid partial
plan is also executed at the same time as the plan repair.
However, plan repair is sometimes impossible, so re-planning
is required. The executive planner IxTeT-eXeC from the LAAS
architecture [22] uses plan repair.

Since a high-level action requested by the planner can be
decomposed into several alternative sequences of low-level
tasks by the executive,task retryaims to select and execute
another sequence of tasks whenever a previous one has failed,
until either the action is successful or all decompositions have
failed (in which case the action is reported as failed to the
planner).

Modality switchingextends the principle of task retry: each
modality represents a possible decomposition of an action,
particularly suited to a specific set of situations. Execution
control selects the modality to be executed, and changes
modalities when necessary (either when the action has failed,
or when another set of situations has been detected). Modality
switching may thus be carried out either when a change occurs
in the environment (robustness), or when a modality fails due
to some system malfunction (fault tolerance). [26] applies
modality switching to robot localization and navigation; [31]
presents switching between two navigation modes similar to
modalities.

III. T OWARDS FAULT TOLERANCE AND DEPENDABILITY

IN AUTONOMOUSSYSTEMS

This section gives first some partial conclusions from our
analysis of the current literature and some general recommen-
dations concerning the development of critical autonomous
systems. We then discuss the area on which we are focussing
our attention.

A. State of the art analysis

Several conclusions can be drawn from the state of the art
presented in the previous section.

1) Generally, we feel that the development of autonomous
systems is lacking a holistic approach to dependability,
through the combined use of its four means (fault
prevention, fault removal, fault tolerance and fault fore-
casting). Currently, fault avoidance (i.e., fault prevention
and removal) is largely privileged compared to fault
acceptance (i.e., fault tolerance and forecasting).

2) When fault tolerance is considered, the focus is on
hardware faults, especially faults that affect sensors and
actuators. Nonetheless, fault forecasting studies show
that software faults should also be taken into consid-
eration.

3) Very few techniques address fault tolerance with respect
to developmentfaults. Robustess techniques contribute
somewhat to it, but are surely insufficient for critical
applications.

4) The autonomous systems community has yet to develop
a measurement culture, both with respect to temporal
performance and dependability: for example, we have
found very few studies relating to fault forecasting of
autonomous systems.

B. Recommendations for developing autonomous systems

This section presents conclusions and recommendations
aiming to improve dependability in critical autonomous sys-
tems, adapted from [21].

1) An inference mechanism (the part of a decisional mech-
anism that is independent of the application) can be
used for different applications, and problems encoun-
tered during its verification and validation are similar
to those of “classic” software components. In practice
however, inference mechanisms and knowledge are gen-
erally tightly linked, and it can be impossible to validate
them separately. Moreover, validity may be complicated
as autonomous systems have to take into account a large
number of situations.

2) The use of learning mechanisms is not recommended
for critical systems: first it is difficult to establish and
ascertain their behavior as it emerges from examples;
second, and in particular for online learning, the system
behavior evolves without any direct control from the
operator.

3) Although autonomous systems are supposed to operate
with as little human intervention as possible, it is recom-
mended to allow direct intervention by a human operator
should the need arise (e.g., through remote control or an
emergency stop switch).

4) A major challenge for development of autonomous sys-
tems is the occurrence of unexpected adverse situations.
Robustness techniques can aim to ensure acceptable
behavior but specific measures have to ascertain whether
the system responses are safe and correct. Offline inten-
sive simulation tests and online safety-bag mechanisms
are thus strongly recommended.

5) Knowledge used by decisional mechanisms is a key
factor in establishing the system behavior. In practice,
the problems of correctness and completeness are com-
plicated by the almost unavoidable presence of heuris-
tics, which may trade correctness and completeness for
tractability. We feel that more work is needed in this
field, concerning first, the dependable formulation of
knowledge and second, techniques for handling residual
faults in the formulated knowledge.
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C. Area of work

Our work aims to devise mechanisms for tolerating develop-
ment faults in autonomous systems, an area which, as far as we
know, is one that is yet to be explored. We focus on decisional
mechanisms, and more particularly on their knowledge, as they
represent the main distinction between autonomous systems
and classic (non-autonomous) computing, for which efficient
fault tolerance mechanisms have already been developed.

Two complementary aspects have to be considered: system
safety and system reliability.

• The safety aspect aims to render the probability of a
catastrophic failure negligible. Mechanisms for ensuring
safety focus on the detection of errors that might violate
safety constraints followed by positioning the system in
a safe state.

• The reliability aspect aims to give correct or acceptable
timely decisions, that is decisions that first, allow the
system to provide a correct or acceptable service, and
second, guarantee temporal constraints imposed by the
system and environment dynamics. Ensuring reliability
despite faults requires some form of error detection and
service recovery.

Error detection has to be implemented in both cases. Cov-
ering a sufficient set of development faults requires the use
of several complementary techniques: timing and execution
checks, reasonableness checks, checks by diversified compo-
nents, and, specifically for the safety aspect, safety-bag checks.
Checks by diversified components appear to be difficult to
implement in some decisional mechanisms (such as planners)
since there are often a large number of valid possible plans,
which cannot all be compared. Moreover, two equally valid
plans may be strongly dissimilar, making it difficult to define
a satisfactory choice criterion. Nonetheless, an automated
generation of plan oracles has been successfully implemented
during the validation of the RAX system [11].

Concerning the safety aspect, the use of a safety-bag to
detect dangerous situations and and position the system in a
safe state is attractive for many critical systems. We believe
that safety-bags are a promising technique for autonomous
systems, since their efficiency is not affected by uncertainties
in the system behavior due to the use of decisional mecha-
nisms. Nonetheless, work remains to be done on theexpression
of safety constraints to be dynamically verified, the actions
needed toposition the system in a safe state, and possibly
more complexreaction capabilities.

Concerning the reliability aspect, two cases can be distin-
guished: the acceptability of decisions, and their timeliness.
The acceptability of decisionscan be disrupted by compro-
mises in development, faults in decisional mechanisms, or en-
vironment changes1; we think that knowledge diversification,
either in the heuristics or in the domain-specific model of a
decisional mechanism, is a potential fault tolerance mechanism
for addressing this concern. To improve thetimeliness of
decisions, possible fault tolerant techniques include concurrent

1According to concepts presented in the first part of this article, problems
raised by environment changes relate to robustness rather than fault tolerance.

use of different heuristics, or a relevant selection according to
the type of problem addressed by the system.

IV. FUTURE DIRECTIONS

We are currently focussing on fault tolerance techniques
addressing the reliability aspect of decisional mechanisms.
We present below some possible alternatives for implementing
fault tolerance in decisional mechanisms and then propose an
experimental framework for assessing their efficiency. We are
currently implementing this framework, prior to prototyping
some of the evoked mechanisms.

A. Fault tolerance capabilities for decisional mechanisms

This section presents several possible research paths that
we have identified for improving fault tolerance in decisional
mechanisms.

1) Agent-based type of architecture:Although the “three-
layer” type of architecture [14] is by far preponderant today in
the development of complex autonomous systems, theagent-
based type of architectureproposed in IDEA [27] offers a
promising alternative. It actually considers an autonomous
system as a group of multiple “agents”, each possessing de-
liberative mechanisms and the same symbolic representation,
and implementing a different system function (Figure 3). Each
agent is capable of making independent decisions and taking
actions to satisfy local goals based on requests from other
agents and its perceived environment.

Agent 1

Agent 2

Agent 3

High−level Objectives

Hardware Interface

Figure 3: Agent-based type of architecture: IDEA principle

In comparison with more classical architectures, we think
that several aspects of the agent-based type of architecture may
improve system dependability and robustness:

• The same symbolic representation is used by the planning
and executive components of all agents, thus limiting
the risks of semantic mismatch (particularly model mis-
match) between planning and execution control (fault
avoidance).

• The flexibility of modular agent-based programming may
allow the system to correctly react to a larger set of ad-
verse situations than other more monolithic architectures.

• The system is explicitly divided into task-specific compo-
nents (the agents), which may diminish error propagation
and facilitate error recovery (fault tolerance).
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2) Plan analysis:As a decisional mechanism may generate
erroneous plans (for example because of residual development
faults in the model), it is interesting to check on-line the
validity of a plan before its execution, that is whether it
contains inconsistencies, and possibly whether it advances the
system towards achieving its goals. Such an error detection
mechanism could trigger some form of forward recovery. It
might be possible to develop an on-line acceptance test based
on the previously mentioned work by Feather and Smith on
oracles for off-line testing of the correctness of plans produced
by the DS1 planner [11].

3) Heuristic diversification:As previously stated, heuris-
tics are used in decisional mechanisms to deal with the
computational complexity of an AI algorithm, often at the
cost of its completeness. Moreover, a heuristic is generally
specialized: its use gives good performance on particular types
of problems, but is not able to solve others. We think that using
several diversified heuristics rather than a single one may deal
with these difficulties. Two possibilities can be considered:

• The heuristics are executed competitively for each prob-
lem, and the system chooses to execute the solution given
by the first heuristic to satisfy an evaluation criterion, for
example the first heuristic to find a solution, or the first
to find a correct solution in spite of development faults
if this correctness may be assessed by a corresponding
acceptance test, e.g., by plan analysis as previously pre-
sented (compensation recovery).

• One heuristic is privileged and executed first; other
heuristics may be successively tried if no (correct) so-
lution is found in a set time (forward recovery).

Either way, a set of heuristics adapted to the different
problems that the decisional mechanism may face needs to
be identified. An analysis and classification of the heuristics
regarding the type of problems that they solve efficiently may
be particularly useful to help choose the successive order of the
heuristics to be executed in our forward recovery proposition.

4) Model diversification:Diversification of the model con-
sists in the implementation of different descriptions of the sys-
tem, environment, tasks, or procedures used by the decisional
mechanism to draw inferences. The decisional mechanism
detects the presence of an adverse situation when an executive
procedure or a plan produced from one of these models fails
(although it is unable to ascertain whether this situation is
caused by a system fault or by an environmental uncertainty).
It may then try to recover from the possible failure by
switching to another model and re-planning. This technique
aims to tolerate development faults in the model descriptions,
in a similar way to software diversification in classic comput-
ing systems. Whether it is efficient for autonomous systems
remains to be seen.

B. Fault tolerance comparison between different decisional
mechanisms

The implementation of any fault tolerance mechanism often
negatively impacts the system performance and development
costs, principally because it requires redundancy at some level
to detect an error or accomplish a recovery. Evaluation of

such mechanisms is thus essential to ascertain whether their
effectiveness outweighs their overheads. We present in this
section the simulation and fault injection environment that
we are currently implementing to experimentally evaluate the
efficiency of the various possibilities previously presented.

The use of simulation rather than the execution of the actual
system is mainly motivated by two reasons:

• The large number of experiments required to perform
a significant evaluation: experiments on real systems
usually need more time to be executed, and are more
difficult to automate.

• The hazardous behavior of the system during an experi-
ment: as we inject faults in the system, we cannot predict
its behavior, which may cause damage to itself or its
direct surroundings.

Previous studies have demonstrated that fault injection may
efficiently simulate real software faults [8] [17]. We particu-
larly focus on two techniques:

• Mutation of a program source is the introduction of a
unique fault through the modification of a particular line
of code. It simulates programming faults accurately, but
is generally costly in time as one mutated version of the
program must be compiled for each fault.

• Interception and modification of the inputs or outputs of
a program aims to simulate errors caused by the fault
rather than the fault itself.

1) Simulation environment:The simulation environment
that we intend to use is represented in Figure 4. Different
decisional mechanisms can be implemented on top of a
hardware interface (composed of Genom modules from the
LAAS architecture), providing requests to a virtual robot that
operates as part of the simulation environment.

Modules
Adapted

Modules
Adapted

ENVIRONMENT
Pocosim

Decisional Mechanisms Description
Model

Environment
Description

SIMULATION

Gazebo

GENOM Modules

Objectives
System

Modules Modules Modules
Regular Regular Regular INTERFACE

HARDWARE

Figure 4: Simulation environment

This environment may be decomposed into three elements:
a robot simulator named Gazebo2, an interface library named
Pocosim, and some modules from the functional layer of a
three-layer type of architecture.

2From the “player/stage project”, http://playerstage.sourceforge.net
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• The robot simulator Gazebo is used to simulate the
physical world and the actions of the autonomous system;
it takes as input a file describing the environment of the
simulation (mainly a list of static or dynamic obstacles
containing their position, and the physical description
of the robot) and executes the movement of the robot
and dynamic obstacles, and possible interactions between
objects.

• The Pocosim library [19] is a software bridge between
the simulated robot (executed on Gazebo) and the soft-
ware commands generated by the Genom modules: it
transforms commands to the actuators into movements
or actions to be executed on the simulated robots, and
relays the sensor inputs that Gazebo produces from the
simulation.

• The Genom modules [12] compose the hardware interface
between decisional mechanisms and the simulated hard-
ware: they execute non-decisional algorithms and gen-
erate commands to the simulated system from requests
given by upper-level components. Special libraries must
be used with the modules that are supposed to control the
hardware components of the system, in order to link them
with the Pocosim bridge; other modules are integrated as
they are. Existing modules can be used without modifying
their source code.

The Genom modules receive requests from, and send reports
to, the upper decisional mechanisms, including the decisional
mechanism to be evaluated. Typically, these decisional mech-
anisms may be a planner and an executive (as in a classic
three-layer type of architecture), or a hierarchy of agents (as
in multi-agent type of architecture).

Currently, we are integrating the different components of
the simulation environment with the OpenPRS executive and
the IxTeT-eXeC temporal executive and planner of the LAAS
architecture. From this base, we should be able to imple-
ment the various possibilities evoked in section IV-A: most
techniques imply only modifying (or possibly replacing) the
IxTeT-eXeC component. However, the comparison with the
agent-based architecture requires replacing both IxTeT-eXeC
and OpenPRS by agents possessingequivalentknowledge in
order for the comparison to be valid. This may prove difficult
since the programming approaches for the two systems are not
similar.

2) Fault injection: In order to establish a campaign of
experiments for assessing the fault tolerance capabilities of
a particular decisional mechanism, we need to determine four
different aspects (Figure 5) [2]: thefaults (or faultload) to
be injected into the system, theactivity (or workload) that
the robot will execute during an experiment, theresults that
we need to observe and store, and themeasuresthat we will
use to sum up the results and compare the different systems.
For the measures to be representative, a sufficient number of
experiments must be performed: automation of experiments is
thus imperative (e.g., through the use of shell scripts).

Modules

Adapted

Modules

Adapted

Pocosim

Gazebo

GENOM Modules

Modules Modules Modules

Regular Regular Regular

FAULTS

Model

Description

MEASURES

RESULTS

ACTIVITY

Description

Environment

System

Objectives

OPENPRS IxTeT−eXeC

� � �� �� � �� � � �
� �� � �� �

Figure 5: Proposed experimental framework

• Faultload: Each experiment focusses on a specific fault;
to narrow our focus, we consider onlysoftware faults
affecting decisional mechanisms. Faults may be injected
either by mutating the model given to the planner, or by
intercepting and modifying (for example by bit-flipping)
a report or a request between the planner and the exec-
utive. As the model is generally directly parsed by the
decisional mechanisms, there is no need to compile the
mutants obtained from the model.

• Workload: The activity encompasses the task that the
system must carry out, and the environment in which it
will evolve. We have chosen the case of a space rover,
required to take pictures of particular locations, to upload
them into a remote database during given communication
windows, and to return home in a set time. An environ-
ment is a set of static obstacles unknown to the robot
(possibly blocking the system from executing one of its
goals), which introduces uncertainties and stresses the
system navigation mechanism. Each experiment should
be composed of different runs using different environ-
ments, in order to activate the system’s functionalities as
broadly as possible.

• Results: To establish relevant measures, we need to gather
results concerning whether the injected fault has been
activated during the experiment, and possibly whether it
has been detected and correctly identified by the system.
We also need to know the list of different objectives
that the system has successfully completed. Other useful
results include the distance covered by the system and
the duration of its activity. The information pertaining to
system activity (completion of objectives, distance and
duration) must be obtained from Gazebo during the exe-
cution of an experiment, whereas information concerning
treatment of the fault and its subsequent error(s) must be
obtained through observation of the targeted decisional
mechanism.
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• Measures: Measures consist of dependability-specific
measures and other performance measures. Dependability
measures encompass principally thecoverageof each
decisional mechanism implemented with respect to the
faults injected and activated, and the error detection
latency. Performance measures quantify the degree of
success of the system regarding its mission: the mean
number of goals it has achieved, and the mean time and
distance required.

CONCLUSION

In this article, we have presented several basic concepts:

• Robustness and fault tolerance, both characterizing the re-
silience of a system towards particular adverse situations;
robustnesscharacterizes resilience towards uncertainties
of the environment, andfault tolerance characterizes
resilience towards faults affecting the system resources.

• Decisional mechanismsare central to autonomous sys-
tems as they embody the ability to dynamically select
appropriate actions to achieve specific objectives; they
are composed ofknowledgespecific to a domain of
application and aninference mechanismused to solve
problems.

We also summarized the state of the art in dependability
and robustness mechanisms used in autonomous systems, and
some conclusions that we drew from it. In particular:

• Fault avoidance is largely privileged compared to other
dependability means, although it rarely appears to be
implemented intensively enough.

• Development faults are hardly addressed by fault tolerant
mechanisms in autonomous systems; robustness tech-
niques somewhat compensate this problem, but are surely
insufficient for critical applications.

We presented our specific area of interest: the development
of fault tolerance mechanisms for autonomous systems, and
more particularly techniques for tolerating residual faults in
the knowledge used by decisional mechanisms. Two aspects
can be considered:

• The safetyaspect aims to minimize the probability of a
catastrophic failure. We believe that the use of safety-bags
may be efficient to detect unsafe system commands and
react by positioning the system in a safe state, but more
work is needed on the expression of safety constraints to
be checked by the safety-bag.

• The reliability aspect distinguishes two cases: the accept-
ability of decisions and their timeliness. Reliability in
the presence of faults requires error detection and system
recovery. We are currently focussing on this particular
aspect.

We finally described the current and future directions of our
work. We presented four possible research paths to improve
fault tolerance in decisional mechanisms:

• The use ofagent-based type of architectureto take advan-
tage of their flexibility and internal semantic consistency.

• Plan analysisfor detecting errors on-line by checking the
validity of plans before their execution.

• Heuristics diversificationto tolerate residual faults in the
heuristics or their inability to treat specific situations.

• Model diversificationto implement redundant models to
compensate for possible faults in domain-specific knowl-
edge.

We also presented an experimental framework based on sim-
ulation and fault injection that we are currently implementing
to assess the efficiency of these mechanisms.
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