
On Fault Tolerance and Robustness
in Autonomous Systems

Benjamin Lussier, Raja Chatila, Felix Ingrand, Marc-Olivier Killijian, David Powell
LAAS-CNRS,

7 Avenue du Colonel Roche, F-31077 Toulouse Cedex 04, France
{ blussier, raja, felix, mkilliji, dpowell} @laas.fr

The dependability of autonomous systems is a particular
concern, notably because of the advanced decisional mech-
anisms and other artificial intelligence techniques on which
such systems rely. This paper sets the context of dependability
and autonomy, and focuses on two non-exclusive approaches
aiming to improve dependability: fault tolerance and robust-
ness. The paper gives definitions of these approaches, and
studies their relationship and applicability to autonomous
systems.

INTRODUCTION

As autonomous systems play an increasing role in space
exploration (Deep Space Onein 1999,Spirit andOpportunity
Martian rovers in 2004), increasing opportunities appear in
other applications, such as elderly-care, tour guides or personal
service. Yet with the introduction of systems capable of taking
decisions without much human supervision, arises the need
to ascertain their dependability, that is a justified trust that
they will satisfactly perform their missions and not cause
catastrophes. This paper studies the relationship between two
approaches aiming at this goal from different fields: fault
tolerance from the computing domain, and robustness from
the robotic domain.

We describe in the first section basic concepts of depend-
ability in computing systems, and the associated notion and
mechanisms of fault tolerance. The second section introduces
autonomous systems, particularly mechanisms and architec-
tures used to enforce autonomy. Finally, we present in the
third section the notion of robustness and its connection to
fault tolerance, describing further robustness and fault toler-
ance mechanisms currently used in autonomous systems, and
potential areas of application in decisional mechanisms.

I. DEPENDABILITY AND FAULT TOLERANCE

Computing systems are ubiquitous in modern society, con-
trolling structures as critical as railroads, planes, and nuclear
plants. Dependability has been for a long time a major concern
in such systems, concepts and techniques are well established.
This section presents basic dependability concepts in comput-
ing systems, as described in [9] and [1], and particularly the
technique of fault tolerance.

A. Dependability basic concepts

The dependabilityof a computing system is its ability to
deliver service that can justifiably be trusted.Correct service
is delivered when the service implements the systemfunction,
that is what the system is intended to do. Three concepts
further describe this notion of dependability: the attributes of,
the threats to, and the means by which it is attained (Figure
1).

}
}

INTEGRITY
MAINTAINABILITY

ERRORS

FAILURES FAILURE MODES

FAULT PREVENTION

FAULT REMOVAL

FAULT TOLERANCE

FAULT FORECASTING

SAFETY

PHYSICAL FAULTS

DESIGN FAULTS

INTERACTION FAULTSDEPENDABILITY

ATTRIBUTES

THREATS

MEANS

RELIABILITY
AVAILABILITY

FAULTS

CONFIDENTIALITY

FAULT AVOIDANCE

FAULT ACCEPTANCE

Figure 1: Dependability tree

The attributesof system dependability consist of:

• availability: the deliverance of correct service at a given
time,

• reliability: the continuous deliverance of correct service
for a period of time,

• safety: the absence of catastrophic consequences on the
users and the environment,

• confidentiality: the absence of unauthorized disclosure of
information,

• integrity: the absence of improper system state alterations,
• maintainability: the ability to undergo repairs and modi-

fications.

Dependability is an integrative concept that encompasses these
basic attributes; depending on the application intended for
the system, different emphasis may be put on each attribute.
Several other dependability attributes have been defined that
are either combinations or specializations of the above.

The threats to a system’s dependability consist of failures,
errors and faults. A systemfailure is an event that occurs when



2

the delivered service deviates from correct service. The way
in which a system can fail are itsfailure modes, characterized
by the severity and the symptoms of a failure. Anerror is that
part of the system state that can cause a subsequent failure.
An error is detected if its presence is indicated by an error
message or error signal; errors that are present but not detected
are latent errors. Afault is the adjudged or hypothesized
cause of an error. A fault is active when it produces an
error; otherwise it is dormant. Faults can be characterized and
regrouped into three major fault classes:physical faultsare
faults due to adverse physical phenomena,design faultsare
faults unintentionally caused by man during the development
of the system, andinteraction faultsare faults resulting from
the interaction with other systems, including users.

The meansto attain a system’s dependability are regrouped
in four techniques:

• fault prevention: how to prevent the occurrence or intro-
duction of faults,

• fault removal: how to reduce the number or severity of
faults,

• fault tolerance: how to deliver correct service in the
presence of faults,

• fault forecasting: how to estimate the present number, the
future incidence, and the likely consequences of faults.

Fault prevention and fault removal can together be considered
as fault avoidance, that is the attempt to develop a system
without faults. Fault tolerance and fault forecasting embody
the concept offault acceptance, which attempt to estimate
and reduce the consequences of the remaining faults, know-
ing that fault avoidance is almost inevitably imperfect. The
development of a dependable computing system calls for the
combined utilization of these four techniques. In the sequel,
we focus on the fault tolerance technique.

B. Fault tolerance

Fault tolerance is intended to preserve the delivery of correct
service in the presence of active faults. It is generally imple-
mented by error detection and subsequent system recovery,
and possibly by error containment.

Error detectionoriginates an error signal or message within
the system. There exist two classes of error detection tech-
niques:

• concurrent error detection, which takes place during
service delivery,

• preemptive error detection, which takes place while ser-
vice delivery is suspended; it checks the system for latent
errors and dormant faults.

Recoverytransforms a system state that contains one or
more errors (and possibly faults) into a state that can be
activated again without detected errors and faults. Recovery
consists of error handling and fault handling.Error handling
eliminates errors from the system state. It can take three forms:

• rollback, where the state transformation consists of re-
turning the system back to a saved state that existed prior
to error detection; that saved state is called a checkpoint,

• rollforward, where the state without detected errors is a
new state,

• compensation, where the erroneous state contains enough
redundancy to enable error elimination.

Fault handlingprevents a fault from being activated again in
four steps: fault diagnosis, fault isolation, system reconfigura-
tion, and system reinitialization.

Error containment restrains the propagation of an error
within a containment area, thus preventing the failure of other
system components.

C. Common fault tolerance mechanisms

In the following paragraphs, we consider techniques appli-
cable for tolerating physical faults, design faults and interac-
tion faults.

1) Tolerance of physical faults:The detection of errors in-
duced by physical faults is commonly attained by the following
mechanisms:

• duplication and comparisondetects errors by comparing
the output of two independent and functionally identical
units, under the assumption that the same fault will not
affect the two units simultaneously,

• timing and execution checksare usually implemented by
“watchdog” timers; they can be used to detect a timing
error or to monitor the activity of a component,

• reasonableness checksuse specific hardware or software
to verify value invariants (invalid memory address, invalid
input or output),

• error detecting codesintroduce redundancy in the in-
formation representation to detect possible errors in that
representation.

Following an error detection, system recovery is mainly
attained by error handling:

• Rollback error recovery is the most popular form of
recovery: hardware or software mechanisms periodically
save the system state so as to be able to return the system
to a previous stable state. They are however time and
resource consuming, as well as ill-adapted to hard real-
time deadlines.

• Rollforward error recovery consists in searching for a
new state acceptable for the system from which it will be
able to resume operation (possibly in a degraded mode).
Reinitialization of the system and exception handling are
possible approaches for rollforward error recovery.

• Error compensation requires sufficient redundancy in the
system state so that, despite errors, it can be trans-
formed into an error-free state. Error compensation can
be launched following error detection (detection and
compensation), or can be systematic (fault masking). The
use of self-checking components in active redundancy
is an example of detection and compensation: in case
of failure of one of them, it is disconnected without
disturbing the other components. Fault masking can be
implemented by majority voting: computation is carried
out by three or more identical or similar components
whose outputs are voted.

2) Tolerance of design faults:The same principles as for
physical faults apply to design faults, except for the type of
redundancy used for detection and recovery.To achieve (or



3

at least aim for) independence with respect to design faults,
redundant elements must be of dissimilar or diversified design.

Tolerance of design faults addresses two major concerns: to
limit the consequences of task failure on the rest of the system
or its environment, and to maintain service continuity.

• In the former case, one tries to detect an erroneous task
as early as possible and to halt it to prevent propagation
of errors; examples are an approach called“fail-fast” ,
and the notion ofsafety-bag[8]. A safety-bag intercepts
the actions requested by the users or components of the
system, rejecting those that invalidate its set of safety
rules.

• In the latter case, one makes use ofdesign diversity,
which relies on several copies of a component (called
variants), designed and produced separately from the
same specification. Adecision makeris also required,
which aims to produce an error-free result from those
produced by execution of the variants. There exist three
basic approaches for design fault tolerance using design
diversity: recovery blocks[15], N-version programming
[4], and N-self-checking programming[10].

3) Tolerance of interaction faults:Distinction is made
between accidental interaction faults, such as an operator
mistake, and intentionally malicious interaction faults.

• Accidental interaction faultscan be tolerated both by
error processing and treatment of error causes.Error
processingis achieved through error detection usingtask
modelsor diversified sources of information, and error
recovery such as the replacement of the erroneous action,
automatically or after the user’s approval. Thetreatment
of error causesaims to establish the diagnosis of error
causes and then to design solutions to act on these causes.

• Intentionally malicious interaction faultsmay be caused
by intruders external to the system attempting to penetrate
the system, registered users trying to extend their privi-
leges, or privileged users abusing their privileges. Toler-
ance of such intrusions aims to protect the availability, in-
tegrity and confidentiality of the information, using tech-
niques such as replication, fragmentation-redundancy-
scattering and cryptography, or to act on the intrusions
themselves via detection and recovery.

II. A UTONOMOUSSYSTEMS

Artificial Intelligence(AI) originally aimed to develop ma-
chines with reasoning capabilities similar to or better than
human. Although far from such a goal, techniques and mech-
anisms have been successfully introduced in various domains,
such as autonomous systems. This section proposes a defini-
tion of autonomous systems, and describes some decisional
mechanisms and architecture principles used to support au-
tonomy. It introduces in particular the LAAS architecture.

A. Definition of autonomy

Common definitions of autonomy (“self-independence”,
“ability to self-manage”) are not adapted to characterize the
systems that we are interested in, so we attempt to formulate
a functional definition of an autonomous system:

an autonomous systemimplements selection and
execution of actions to be taken through one or
more of the following AI functionalities: planning,
execution control, situation recognition, diagnosis,
and may also incorporate learning mechanisms.

• Planning consists in choosing and organizing actions to
be taken, according to their estimated results, in order to
achieve one or more objectives.

• Execution controlacts as coordinator and supervisor of
the execution of plans. It mainly decomposes high-level
actions into sequences of behaviors or simpler tasks,
and controls their execution in order to react to possible
failures due to the system itself or to its environment.

• Situation recognitionaims to identify the circumstances
confronting the system that are likely to affect its behav-
ior, generally the system state and that of its environment.
Situation recognition usually rely on pas event observa-
tions in order to draw conclusions on the current situation,
and eventually on the intentions of other agents involved.

• Diagnosisidentifies an erroneous system state, generally
after an error detection. Although diagnosis may be
viewed as a specific application of situation recognition,
their approaches and techniques are distinct.

• Learning seeks to improve the system capabilities by
using information related to preceding executions. The
learning process does not make decisions, but typically
develops some models that can be used by other func-
tionalities.

B. AI approaches for autonomy’s functions

Several approaches developed in the AI field may be used
to implement the functions listed above; they are commonly
referred to asdeliberative approaches, in opposition to the
reactive mechanisms of classical automation. Deliberative
mechanisms are either executedoff-line before activation of
the system, oronline concurring to its execution. The most
common approaches used to implement autonomy are [16]:

• States space searchmanipulates a graph which nodes
are the states of the system, and transitions are events
and actions leading from one state to another. The search
consists in examining possible sequences of actions, then
choosing the most appropriated one to achieve some
given goal. This approach is mainly used for planning,
situation recognition and diagnosis.

• Constraint satisfaction techniquesseek to resolve a Con-
straint Satisfaction Problem (CSP), defined by a set of
variables and constraints upon them. A solution of the
problem is found when all variables have value ranges
satisfying the constraints.Temporal constraint planning
is achieved through extension of a CSP to include a
temporal dimension.

• Markov Decision Processes(MDP) are sequential deci-
sional problems on the actions (deterministic or stochas-
tic) and states of the system. A given solution has the
form of a policy which gives the best action for the
system to take in each possible state. The MDP technique
supposes that the system knows exactly in which state



4

it is; an extension calledPartially Observable Markov
Decision Processes(POMDP) addresses this limitation.
MDPs are mainly used for planning and learning.

• A Bayesian networkis an oriented acyclic graph rep-
resenting the state variables of the system, and their
influences on each other; such a network is used to manip-
ulate probabilities and uncertainties. Dynamic Bayesian
networks extend this approach with a discrete temporal
dimension. Bayesian networks are mainly used for diag-
nosis and learning.

• Hidden Markov Models(HMM) are discrete temporal
and probabilistic models of the system state; this state
is not supposed to be directly observable but produces
observable outputs. With some manipulations, an equiv-
alent Bayesian network can be found for each HMM
(and vice versa); each representation is more appropriated
for different algorithms. HMMs are mainly used for
diagnosis and learning.

• A neural networkis a compound of units, also called
artificial neurons, which defines a complex non-linear
function. The units are linked by directed weighted
connections, and organized in different layers. Neural
networks can be cyclic or acyclic, and are mainly used
for learning.

Several other approaches have also been implemented for
autonomy, such as genetic algorithms, contradictory search,
and expert systems; in our opinion, these approaches are less
viable than those mentioned previously.

C. Types of architecture for autonomous systems

We describe in the following paragraphs three types of ar-
chitecture most popular for the implementation of autonomous
systems: thesubsumptiontype, the“three layer” type, and the
multi-agenttype. The subsumption type and the “three layer”
type are discussed in [6].

1) Subsumption type of architecture:This type of architec-
ture [3] is “behavior-based”: it rejects the need for a symbolic
representation of the system and its environment, proposing
instead layers of progressively more complex task-specific
control programs (calledbehaviors) on top of each other. At
each execution cycle, each behavior may generate an output;
the different outputs are then combined into the task to be
executed, for example: by executing only the behavior with
the utmost priority, or combining all of the outputs (Figure 2).

Behavior 1

Behavior 3

Behavior 2

P
er

ce
pt

io
n A

ction

Hardware

Figure 2: Subsumption type of architecture

In our opinion, the lack of symbolic representation in the
subsumption type prevents an efficient use in complex envi-
ronments and situations. The subsumption type is currently
used on toy robots but not for complex critical systems.

2) “Three layer” type of architecture:The “three layer”
type of architecture consists of several hierarchical compo-
nents (orlayers), considering different level of abstraction for
the symbolic representation of the system and its environment.
There are typically three layers (hence the name), but some ar-
chitectures focus only on some of these layers, or regroup two
layers into one. The three classical layers are the decisional
layer, the executive layer, and the functional layer (Figure 3):

• The decisional layer is situated at the top level of
abstraction. It carries out the most complex decisions,
producing the plan required to achieve the objectives of
the system, and taking into consideration problems or
errors raised by the executive layer.

• The executive layerselects sequences of elementary
functions needed to execute the high level plan of the
decisional layer. It also reacts quickly to errors or failed
tasks, raising the problem to the decisional layer when
unable to solve it.

• The functional layer offers an interface between the
higher layers and the hardware, combining sensors and
actuators into elementary functions controlled by the
executive layer. It does not possess a symbolic repre-
sentation of the system, but must guarantee real-time
constraints to control the hardware efficiently.

Execution Control Layer

Decisional Layer

Functional Layer

Hardware

High−level Objectives

Figure 3: “Three layer” type of architecture

The “three layer” type of architecture is the one most often
used to develop complex autonomous systems. It has been
implemented in the RAX architecture during the NASA’s Deep
Space One mission [13], and is currently used in the CLARAty
architecture [18] and the LAAS architecture (described in the
next section).

3) Multi-agent type of architecture:The multi-agent type
of architecture considers a group of autonomous systems (or
agents). These agents may be homogeneous or heterogeneous,
evolve in the same environment, and interact with one another
in order to achieve common or self-centered objectives.

Amongst other works, the IDEA architecture [12] considers
an autonomous system as a group of multiple agents, each
possessing deliberative mechanisms and the same symbolic
representation (Figure 4).



5

Agent 1

Agent 2

Agent 3

Hardware

High−level Objectives

Figure 4: Multi-agent type of architecture: IDEA principle

D. The LAAS architecture

The LAAS architecture [2] [14] [11] possesses three layers
(Figure 5):

• The decisional layerencompasses both decisional and
executive layers of the typical “three layers” based ar-
chitecture. A temporal executive planner called IxTeT-
eXeC produces high level plans by constraint planning.
A procedural executive called OpenPRS controls plan
execution and decomposes the high-level actions into
sequences of simpler tasks.

• The request control levelis implemented by the Request
and Resource Checker (R2C) component. It checks the
validity of requests produced by OpenPRS according to
the current system state and a set of conditions defined
during the development of the system. Requests that
invalidate the rules are then rejected.

• The functional level is composed of a hierarchy of
software components (calledmodules) offering services
to specific hardware or software resources (sensors, ac-
tuators, data...). The modules’ generic structure is auto-
matically generated via the GenoM tool.

Figure 5: LAAS architecture

This architecture has been used on several autonomous
robots, such as Rackham: a tour guide currently exhibited at
the ToulouseSpace City Museum.

III. ROBUSTNESS AND FAULT TOLERANCE

The notion of robustness appeared in the robotic field as
an answer to the large variability of execution context due to
an open environment. To some extents, it may be considered
similar to fault tolerance as both techniques seek to cope with
adverse situations that may arise during system operation. This
section introduces a definition of robustness and its connection
to fault tolerance, and presents examples of both approaches
in autonomous systems. It finally discusses their applications
to decisional mechanisms.

A. Definition of robustness

The term robustnessis frequently used in the scientific
community, although in rather a vague way (a common
definition of robust is “strong and healthy”). TheSanta Fe
Institutehas recorded seventeen definitions of robustness from
diverse scientific domains [5]. These various definitions may
be interpreted as the deliverance ofcorrect servicedespite
possibly adverse situations, and then classified into four types
of “situation tolerance” (Figure 6):

1) tolerance ofany situation: deliverance of correct service
in both adverse and nominal situations,

2) tolerance ofadverse situations: deliverance of correct
service in non-nominal situations,

3) tolerance ofexplicitly-specified adverse situations: deliv-
erance of correct service in adverse situations mentioned
in the system’s specifications,

4) extra-tolerance, or tolerance ofunexpected adverse sit-
uations: deliverance of correct service in adverse situ-
ations over and above those mentioned in the system’s
specifications.

2

1

3

4

NOMINAL SITUATIONS

SITUATIONS

ANY

SITUATIONS

EXPLICITLY−SPECIFIED

ADVERSE SITUATIONS

UNEXPECTED ADVERSE
ADVERSE SITUATIONS

Figure 6: Types of “situation tolerance”

Strictly speaking, robustness is thus a superset of fault
tolerance since the latter focuses on faults whereas the former
considers adverse situations in general. However, a useful
distinction between the two can be made by restricting the use
of the term robustness to the tolerance of adverse situations
not due to faults. We therefore adopt the following definitions
in the context of autonomous systems (Figure 7):

• robustness is the delivery of a correct service in
implicitly-defined adverse situations arising due to an
uncertain system environment (such as an unexpected
obstacle or a change in lightning condition affecting
sensors),



6

• fault toleranceis the delivery of a correct service despite
faults affecting system resources (such as a flat tire, a
sensor malfunction or a software fault).

EXPLICITLY−SPECIFIED

ADVERSE SITUATIONS

UNEXPECTED ADVERSE

ADVERSE SITUATIONS

SITUATIONS
SYSTEM RESOURCES

UNCERTAIN ENVIRONMENT

(ROBUSTNESS)

(FAULT TOLERANCE)

Figure 7: Robustness vs. fault tolerance

In practice, it is not always easy to distinguish situations
due to an uncertain environment from situations due to faults
affecting system resources, especially input/output devices, but
this goes beyond the scope of this paper.

B. Robustness mechanisms in autonomous systems

Robustness in robotic systems is typically achieved either by
functional redundancy, aimed at compensating the limitations
of hardware components or software algorithms (such as a
combined use of camera, laser sensor and bumper to detect
obstacles, or complementary localization algorithms), or by
using uncertainties management, aimed at compensating en-
vironment uncertainties for control and observation (such as
fuzzy logic or Kalman filtering).

Autonomous functions mainly improve the robustness of a
system through the use of decisional mechanism and recovery:
the ability to act and react according to the current environment
and system state.

1) Planning: Planning improves system robustness in gen-
eral since it allows the autonomous decision-making that
is a prerequisite for operation in an uncertain environment.
Moreover, least commitment planningallows flexibility with
respect to action ordering, temporal deadlines and resource
consumption.

Planning can itself be made robust through replanning and
plan repair:

• replanning can be activated when a plan has failed;
it consists in stopping the plan execution, eventually
positioning the system in a safe state, and developing
a new plan from the current situation and the remaining
objectives,

• plan repair can be activated when part of a plan has
failed, before replanning occurs; it consists in developing
a new plan from the failed one by backtracking and
eliminating the failed and impossible actions.

2) Execution control:Execution control improves robust-
ness by:

• managing the flexibilities left in the plan,
• detecting possible problems in the plan execution con-

cerning failed tasks or exceptions raised by the lower
layers,

• allowing recovery of a failed task by selecting and
executing an alternative one (in a similar way as recovery
block tolerance of software design faults); it reports a plan
failure when all alternative tasks have failed.

C. Fault tolerance mechanisms in autonomous systems

Faults affecting system resources can be divided in faults af-
fecting non-computational resources (mechanical or electrical
components such as tires, joints, sensors and actuators), and
faults affecting computational resources (such as memories,
CPU and software). The latter refers specifically to mecha-
nisms detailed in subsectionFault tolerance1.B.

1) Faults affecting non-computational system resources:
Faults affecting non-computational system resources are
mainly treated by the function ofdiagnosis and reconfig-
uration. Diagnosis is activated after an error detection and
identifies the cause of an erroneous state by reasoning based
on fault and error models. Reconfiguration may correspond
either to replacement of the failed component, or relocation
of its supported functions to other components by functional
redundancy.

2) Faults affecting computational system resources:The
following paragraphs describes the computational fault toler-
ance mechanisms currently identified in autonomous systems.

Error detectionis mainly implemented through:

• timing and execution checks; watchdogs check the live-
ness of critical functions in the RoboX autonomous
system [17],

• reasonableness checks; they are either implemented by
checking a value with invariants (such as the maximum
robot speed in RoboX), or by detecting incoherences
between the current system state (characterized by sensor
outputs) and a mathematical model (typically used to
activate diagnosis, as in the RAX architecture).

• safety-bag checks; a set of safety properties is checked
by the R2C component in the LAAS architecture.

Error recovery is implemented through:

• positioning in a safe state; this can occur during replan-
ning (LAAS and RAX architectures), or after failure of
a critical component (RoboX and Care-O-Bot [7]),

• software reconfiguration; this can be implemented by
switching between control modes, or by applying a
software patch.

Error containmentis implemented through dedicated CPUs:
RoboX runs one CPU for critical functions (obstacle avoid-
ance, navigation, localization) and one CPU for interaction
functions (face tracking, speech out).

D. Robustness and fault tolerance for decisional mechanisms

Decisional mechanisms can be characterized by three prop-
erties:

• soundness: inferred conclusions are “true” under the
system assumptions,

• completeness: a true conclusion will eventually be in-
ferred,

• tractability: the conclusion can be inferred in polynomial
time and space.

Although soundness and completeness are verified for some
decisional approaches (usually the case for state space search
or constraint planning, but not for neural networks), tractability



7

is often impossible due to NP-hard complexity or semi-
decidability of the considered problems. Therefore soundness
and completeness are sometimes sacrificed for efficiency, for
example with the application of heuristics. Robustness and
fault tolerance can compensate to a point these drawbacks by
improving reliability and safety of the decisional mechanisms.

Robustness techniques can aim to improve the reliability of
an autonomous system through decisional recovery. They can
treat specifically adverse situations affecting the acceptability
of decisions, that is unexpected changes of situation due to
environment and system dynamics, and incorrect knowledge
due to lack of observability on the environment.

Fault tolerance techniques can aim to improve the reliability
of an autonomous system through error detection and the use
of alternate procedures. They can treat specifically: incorrect
or incomplete knowledge due to system deficiencies (faults),
design compromises in favor of efficiency of the decision
procedure, faults in design or implementation of the decision
procedure.

Fault tolerance techniques can also aim to improve the
safety of an autonomous system through error detection and
positioning in a safe state.

CONCLUSION

In this paper, we have briefly discussed several notions:

• dependability, that is the ability of a system to deliver
service that can justifiably be trusted; this notion further
encompasses attributes (such as safety and reliability),
threats (faults, errors and failures) and means (fault
prevention, fault elimination, fault tolerance and fault
forecasting),

• autonomy, that is the ability to select and execute actions
in order to achieve stated objectives, using AI function-
alities: planning, execution control, situation recognition,
diagnosis and learning,

• robustnessand fault tolerance, approaches respectively
from the robotic domain and the computing systems
domain.

Fault tolerance and robustness both characterize the ability
to deliver correct service, but we have distinguished them
according to the type of adverse situations that they try to
confront:

• fault tolerance characterizes tolerance towards faults af-
fecting the system resources,

• robustness characterizes tolerance towards uncertainties
of the environment.

We have introduced the main mechanisms used by these two
techniques:

• fault tolerance consists mainly inerror detection and
error recoverythrough the use of redundancy,

• robustness consists mainly infunctional diversity, com-
pensation of uncertainties, anddecisional recovery.

We have identified areas of application for both techniques in
decisional mechanisms:

• fault tolerance can be implemented to improve on one
hand safety, and on the other hand reliability towards

incorrect or incomplete knowledge due to system defi-
ciencies, design compromise for efficiency, and faults in
the decision procedure,

• robustness can be implemented to improve reliability
towards unexpected changes of situation due to the envi-
ronment or system dynamics, and incorrect or incomplete
knowledge due to lack of observability.

REFERENCES

[1] A. Adelsbach, D. Alessandri, C. Cachin, S. Creese, Y. Deswarte,
K. Kursawe, J. C. Laprie, D. Powell, B. Randell, J. Riordan, P. Ryan,
W. Simmonds, R. Stroud, P. Verissimo, M. Waidner, and A. Wespi.
Conceptual Model and Architecture of Maftia. Technical Report 03011,
LAAS-CNRS, 2003.

[2] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand. An
Architecture for Autonomy. The International Journal of Robotics
Research, 17(4):315–337, April 1998.

[3] R. A. Brooks. A Robust Layered Control System for a Mobile Robot.
IEEE Magazine on Robotics & Automation, 2(1):14–23, March 1986.

[4] L. Chen and A. Avizienis. N-version Programming: A Fault Tolerance
Approach to Reliability of Software Operation. InProceedings of the
8th International Symposium on Fault Tolerant Computing (FTCS-8),
pages 3–9, Toulouse, France, 1978.

[5] Santa Fe Institute document reference RS-2001-009, Posted 10-22-01.
http://discuss.santafe.edu/robustness.

[6] E. Gat. On Three-Layer Architectures. InArtificial Intelligence and
Mobile Robots, D. Kortenkamp, R. P. Bonnasso, and R. Murphy editors,
MIT/AAAI Press, pages 195-210, 1997.

[7] B. Graf, M. Hans, and R. D. Schraft. Mobile Robot Assistants - Issues
for Dependable Operation in Direct Cooperation With Humans.IEEE
Magazine on Robotics & Automation, 11(2):67–77, 2004.

[8] P. Klein. The Safety-Bag Expert System in the Electronic Railway
Interlocking System Elektra.Expert Systems with Apllications, 3(4):499–
506, 1991.

[9] J. C. Laprie, J. Arlat, J. P. Blanquart, A. Costes, Y. Crouzet, Y. Deswarte,
J. C. Fabre, H. Guillermain, M. Kaâniche, K. Kanoun, C. Mazet,
D. Powell, C. Rabéjac, and P. Thévenod.Dependability Handbook (2nd
edition). Cépaduès - Éditions, 1996. (ISBN 2-85428-341-4) (in French).

[10] J. C. Laprie, J. Arlat, C. Béounes, and K. Kanoun. Definition and
Analysis of Hardware-and-Software Fault-Tolerant Architecture.IEEE
Computer, 23(7):39–51, 1990.

[11] S. Lemai and F. Ingrand. Interleaving Temporal Planning and Execution
in Robotics Domains. InProceedings of AAAI-04, pages 617–622, San
Jose, California, July 25-29 2004.

[12] N. Muscettola, G. A. Dorais, C. Fry, R. Levinson, and C. Plaunt. IDEA
: Planning at the Core of Autonomous Reactive Agents. InAIPS 2002
Workshop on On-line Planning and Scheduling, Toulouse, France, April
22 2002. http://citeseer.nj.nec.com/593897.html.

[13] N. Muscettola, P. P. Nayak, B. Pell, and B. C. Williams. Remote
Agent: To Boldly Go Where No AI System Has Gone Before.Artificial
Intelligence, 103(1-2):5–47, 1998.

[14] F. Py and F. Ingrand. Real-Time Execution Control for Autonomous
Systems. InProceedings of the 2nd European Congress ERTS, Embed-
ded Real Time Software, Toulouse, France, January 21-23 2004.

[15] B. Randell. System Structure for Software Fault Tolerance.IEEE
Transactions on Software Engineering, 1(2):220–232, 1975.

[16] S. Russell and P. Norvig.Artificial Intelligence, A Modern Approach
(2nd edition). Prentice Hall, 2002. (ISBN 0-13-790395-2).

[17] N. Tomatis, G. Terrien, R. Piguet, D. Burnier, S. Bouabdallah, K. O.
Arras, and R. Siegwart. Designing a Secure and Robust Mobile
Interacting Robot for the Long Term. InProceedings of the 2003 IEEE
International Conference on Robotics & Automation, pages 4246–4251,
Taipei, Taiwan, September 14-19 2003.

[18] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das. CLARAty
: Coupled Layer Architecture for Robotic Autonomy. Technical Report
D-19975, NASA - Jet Propulsion Laboratory, 2000.


