
Dependability Issues in AI-Based
Autonomous Systems for Space Applications

David Powell, Pascale Thévenod-Fosse
{david.powell, pascale.thevenod-fosse}@laas.fr

LAAS-CNRS, 7 avenue du Colonel Roche

31077 Toulouse Cedex 4, France

Abstract. We present a literature study of
dependability issues raised by the use of
artificial intelligence (AI) techniques in critical
systems. Hazards specific to such approaches
are identified. Drawing on two case studies of
AI-based critical systems, the paper concludes
by a series of recommendations.

1 Introduction
Autonomy is a desirable feature of future
uninhabited spacecraft so as to reduce the need
for ground intervention. First, maintaining
readiness for such intervention is costly.
Second, for some missions, such as deep-space
probes, intervention may be, at best, slow due
to propagation delays and low bandwidth, or
even impossible, due to occlusion when
orbiting remote planets.

Autonomy can be achieved partially by classic
automation, but AI-based approaches enabling
autonomous decision-making are of particular
interest. However, the use of such approaches
on board costly spacecraft raises the question
of their dependability. This paper reports a
preliminary literature study of dependability
issues of using AI-based approaches in critical
systems [Lécubin et al. 2001].

We start by identifying some key concepts
about AI-based systems (mainly by abstracting
from [Robertson & Fox 2000]) and then iden-
tify specific potential hazards. We then present
two case studies of AI-based systems used in
critical applications, where dependability is
evidently a major issue. The first of these is
taken from the area of medical care, the second
from the space domain.

2 Key Concepts
The central concept in most AI-based systems
is that the domain-specific knowledge that

helps the system to solve a problem can be
represented separately from the mechanisms
used to draw inferences from that knowledge.
The advantages of this separation are that:

=  Inference mechanisms can be re-used with
different knowledge bases.

=  Knowledge bases can be maintained
without adaptation of inference
mechanisms.

=  By being represented separately and,
ideally, declaratively, the domain-specific
knowledge is more readily understood by
specialists of the problem domain.

However, it is not possible to use any inference
mechanism with any knowledge base. Each
inference mechanism makes assumptions about
the formal language used in knowledge
representation. Thus, even if a knowledge base
is declarative, it must be expressed in a style
that is appropriate to the inference mechanism
for it to be used effectively. In practice,
knowledge representation and inference are
thus often more tightly linked than one would
expect from theory.

2.1 Knowledge Representation
Production rules constitute one of the earliest
forms of knowledge representation. These use
if a  then b  clauses to represent knowledge.
During inference, if the premise a can be
established, the consequence b can be added to
the working memory, which represents the
current system state. Since the applicability of
a rule depends on the current system state, this
sort of rule does not have a straightforward
declarative interpretation. Moreover, the order
of application of rules is important since each
rule may alter the system state. Some sort of
control information, such as rule precedence, is
thus usually built into the knowledge base.



This intertwining of de-
clarative and procedural
knowledge can easily
give rise to inconsisten-
cies that are difficult to
detect in large knowledge
bases.

In theory, this sort of
problem can be avoided
by using representation
schemes based on logic.
Such representat ion
schemes are more sus-
ceptible to a declarative
interpretation but, sooner
or later, some procedural
problems must be faced
when performing inference (i.e., we must have
a procedure for choosing axioms of the logic
when solving a problem). Nevertheless, the
value of logic is that a large part of the design
may be separated from the choice of
procedure.

In model-based systems, the knowledge base
contains descriptions of a system from which
solutions to a problem can be inferred. In case-
based systems, the knowledge base contains
examples of previous problem-solution pairs,
which are used as paradigms for solving new
problems. Frame-based systems often use a
combination of representational styles from
production rules and logic, with ideas of
modularity and inheritance from object-
oriented design. However, frame-based
systems are not used much nowadays.

Whatever the representation scheme, it is often
necessary to represent uncertainty, either in the
knowledge itself or in the inferences that are
drawn from it. This normally involves labeling
elements of knowledge to indicate the form
and level of the associated uncertainty, and
then propagating these measures of uncertainty
during inference.

2.2 Inference
There is no consensus on how to classify the
many different inference mechanisms that have
been built. Furthermore, many “hybrid”
systems use more than one style of inference to
deal with different aspects of the application.
Nevertheless, there are some broad distinctions
that may be made from the viewpoint of
dependability and safety (Fig. 1).

At the highest level, AI-based systems can be
divided according to the extent to which the
system designers determine the function of the
system.

If the designers define both the knowledge
base and the inference mechanism, then it
should be possible to predict the behavior of
the resulting system. A safety argument may
then be made by relating the predicted
behavior to the code. Furthermore, if the
inference mechanism is based on a logic that
can be guaranteed to be logically consistent
(e.g., systems based on a deductive theorem
prover), it may be possible to formally prove
properties of the system. If not (e.g., in a
production rule system), it may be possible to
base a safety argument on the code structure,
as in conventional software engineering.

Alternatively, some systems are designed to
determine their function by presenting them
with examples, either during training sessions
or incrementally during operation. In this case,
it is not possible to relate arguments about
predicted behavior to the code. However, for
systems that use formal logic in an inductive
style, it may be possible to use formal proof to
increase confidence in the dependability of the
implemented function, conditioned on some
assumptions about the underlying examples.

As in traditional software engineering, testing
is necessary to obtain confidence in the
implemented code. In extreme cases (e.g.,
neural networks), testing is the only technique
on which a safety argument can be based,
especially concerning robustness with respect

System function

Production
rule system

Deductive
theorem
prover

Neural
network

Inductive
learning

Logical consistency Logical consistency

determined by designer emergent from examples

guaranteed not guaranteed guaranteed not guaranteed

Examples

Fig. 1 — A high-level classification of AI-based systems
[Robertson & Fox 2000]



to new inputs for which the system has not
been trained.

2.3 Specific Mechanisms
In this section, we describe briefly some
specific mechanisms that are used in AI-based
systems.

2 .3 .1 Rule-Based  Systems

As already discussed in Section 2.1, production
rules were one of the earliest forms of
knowledge representation. Such rule-based
systems, also known as expert systems, are
probably the most widespread form of artificial
intelligence. They have been studied for more
than forty years, and have had many real-world
applications.

Several formal methods for anomaly detection
have been developed for rule-based systems.
The use of logic to represent the rules enables
the design of automatic systems to detect
incompleteness, conflicts, redundancies, etc.
Three categories [Marcos et al. 1995] of
techniques can be identified:

=  Techniques for checking the whole rule-
base.

=  Techniques focusing on specific properties
of rules (e.g., both X and not(X) in a
premise, meta-rules, etc.).

=  Incremental-checking techniques that allow
a low-cost verification whenever a
modification occurs.

Among all the verifications to be done to
ensure correctness of the rule-base, several are
easy to check and can efficiently increase
consistency. This is the case of:

=  Redundancy: two rules are redundant if
they have the same premises and the same
effects.

=  Conflicts: two rules are in conflict if they
have the same premises but contradictory
effects.

=  Subsumptions: a rule subsumes another if
they have both the same effect but the
premise of the latter is more restrictive than
the former.

=  Unnecessary conditions: a rule contains
unnecessary conditions if two rules have
the same premises and the same effects

except for one condition that is
contradictory in the two rules (e.g., X in
one rule premise and not(X) in the other).

This kind of system is usually designed and
implemented using a rule engine, which
provides a framework for writing rules.
Currently developed rule engines are fairly
easy to interface with other code modules.
These techniques do not guarantee that the
developed system will behave as expected,
even coupled with expert domain knowledge.
Nevertheless, they enable a rapid and efficient
detection of problems in the design and
construction of sets of rules, improving the
overall dependability and safety of the future
system.

However, the challenging problem of rule-
based systems (and other autonomous
decisional systems) is that they are required to
act “sensibly” in unanticipated situations
[Johnson et al., 1999]. Practically the only way
to increase confidence in their ability to
achieve this is to carry out extensive
simulation testing.

2 .3 .2 Probabilistic Networks

Probabilistic networks provide a mechanism
for propagating measures of confidence when
making inferences. Nodes of the network
represent propositions with which different
levels of confidence may be associated. Links
between nodes designate pairs of propositions
for which confidence in one proposition affects
confidence in the other proposition. By fixing
the confidence levels for some of the nodes to
suit the problem to be solved (e.g., by setting
to the highest confidence level the confidence
associated with propositions that are known to
be true) and then propagating the
corresponding change in confidence through
the network, new confidence levels can be
examined for the propositions that are of
interest.

It is possible to make mathematical arguments
of correctness when the confidence
propagation method has a logical foundation,
for instance that of Bayesian probability
theory. If not (e.g., networks based on Monte
Carlo simulation), then the only recourse is to
argue empirically through statistical sampling
from probability distributions obtained by
multiple runs of the network.



2 .3 .3 Argumentation Systems

AI-based systems are often applied in domains
where there is uncertainty in the conclusions
that may be drawn from inference. Even if the
steps taken during inference are based on
logical proof, they may be more appropriately
interpreted in the real world as arguments for
particular courses of action. This observation
has motivated research into the use of
argument structures to control the acceptability
of inference, rather than using summative
measures of confidence.

Argumentation systems are suited to
applications (e.g., drug prescription) that
require flexibility in weighing up evidence for
alternative courses of action (e.g., therapies)
and for which quantitative measures of
confidence (e.g., probabilities) do not give
sufficient information for assessing alternative
strategies in terms comprehensible to human
experts.

2 .3 .4 Fuzzy Logic

Fuzzy logic provides another way of
propagating uncertainty during inference.
Mathematical functions may be used to
translate an observed measurement into several
fuzzy truth-values with associated probabilistic
measures of confidence (e.g., a measure of
25°C might be mapped to “warm” with
probability 0.7 and “hot” with probability 0.5).

The main difficulty with fuzzy logic is that the
probabilistic measures of confidence may not
behave as in conventional probability theory
(for instance, the probabilities of being warm
or hot in the example above sum to more than
1). Although confidence combination functions
can be defined that are well behaved in such
circumstances and often suitable for solving
some engineering problems (e.g., in control
engineering), it is nevertheless difficult to
understand the meaning of such uncertainty
measures.

2 .3 .5 Model-Based Reasoning and
Qualitative Simulation

In model-based reasoning, expert knowledge is
expressed in terms of a model of a class of
problems rather than being represented
directly. For example, when building a
knowledge-based system for fault diagnosis in
electronic circuits, the experts’ diagnostic

procedures may be represented directly or in
terms of a computational model of a family of
electronic circuits. Such an approach has the
advantages of being able to relate inference
more explicitly to the object of study, and of
being often the most natural way of expressing
expertise.

Qualitative simulation is one of the most
effective uses of model-based reasoning.
Qualitative simulation uses qualitative rather
than precise values for state variables. It can be
used to predict large-scale behavior of systems
and to derive there from information that was
not immediately obvious. An advantage of
such a qualitative approach is that it is
normally possible to have a finite set of model
variables, which may take values from only a
small set of possible values, so an exhaustive
exploration of the state space may be possible.
The disadvantage is that increasing the
granularity results in a loss of precision, which
may cause important behaviors to be
overlooked.

2 .3 .6 Planning

The objective of a planning system is to decide
on the appropriate sequences of actions to
achieve a given goal from a given situation.
The distinguishing characteristic of planning
systems with respect to other AI-based systems
is their temporal aspect, i.e., they are
concerned with sequences or partial orderings
of actions, or even with explicit physical
timing. Action timing and precedence
constraints may be expressed in various ways,
ranging from simple linear sequences to non-
linear interval-based representations. Some
planning systems base knowledge
representation and reasoning on a temporal
logic. Recently, a Planning Domain Definition
Language (PDDL) has been defined to
encourage empirical evaluation of planner
performance and development of standard sets
of problems, all in comparable notations
[McDermott 1998][Fox & Long 2001].

2 .3 .7 Inductive Machine Learning

Since expert knowledge is often difficult to
acquire simply by observing or questioning
experts, an important field of research has been
that of acquiring problem-solving knowledge
through induction, by generalizing from
observed examples of behavior. To be



effective, inductive machine learning requires
an application domain capable of providing
both positive and negative training examples,
i.e., examples that establish what the problem-
solving rules should cover and what they
should avoid. The major disadvantage of
inductive machine learning is sensitivity to this
training set, compounded by the fact that the
derived rules may not be readily
understandable by human experts and thus
difficult to validate.

2 .3 .8 Case-Based Reasoning

The idea of case-based reasoning is to
automate a style of human problem-solving in
which recollections of past problem-solving
situations are reinterpreted to suggest solutions
to similar problems, instead of trying to follow
chains of reasoning from assumptions to
conclusions. Past problems and their solutions
are collected into a library of formal
descriptions. Features of a new problem
described in the same formalism are compared
to features of past problems by means of a
matching algorithm. The closest matching past
problem and its solution are then retrieved and
automatically adapted to the new problem. If
appropriate, the solution may be refined and
the new problem-solution pair added to the
case library. Case-based reasoning systems are
thus learning systems. The effectiveness of this
approach depends on the matching algorithm,
which may range from simple keyword
matching to complex systems of structural
comparison and inference. The choice of
algorithm is domain-dependent and often
heuristic. It seems that only empirical testing
can raise confidence about the dependability of
the matcher.

2 .3 .9 Artificial Neural Networks

Artificial Neural Networks (ANNs) aim to
model the processing of information by the
human brain. Only the most basic elements of
the brain are represented, using a basic
structure called a neuron.

A group of inputs are weighted, processed by
two functions (a simple one and a transfer
function), and finally output. The basic
function may currently be a sum, a maximum
extraction, an average value, an OR, an AND,
etc. whereas the transfer function may be a
sigmoid, a hyperbolic tangent, etc. Sets of

replicated neurones are then organised in
layers, of which three different kinds are
traditionally distinguished:

=  The Input Layer, where each neurone is
connected to real-world sensors.

=  The Hidden Layer (there may be several)
having inputs coming directly from the
outputs of other neurones and outputs going
directly to inputs of other neurones.

=  The Output Layer, giving its outputs to the
real world or to another subsystem.

Knowledge in an artificial neural network
(ANN) system is therefore not encoded
symbolically but is represented indirectly
through the states of the neurons and of the
interconnections between them. Neurons
normally have simple states of activation or
deactivation dependent on adjustable weights.
Before deployment, a neural network must be
trained on a series of positive and negative
examples, with appropriate “rewards” or
“punishments” (weight adjustments)
depending on whether or not it proposes a
matching solution. Confidence in the
dependability of a neural network may
normally only be based on statistical
arguments about the training sets and the
network structure. Nevertheless, neural
networks have been very effective in some
problem-solving domains, such as language
processing, character or pattern recognition,
image compression and servo-control in
unpredictable environments.

3 Hazards of AI-Based
Systems

AI-based systems can provide significant
benefits for implementing autonomy, including
in certain cases, improved dependability and
safety. However, they also introduce new
hazards (in addition to the usual hazards
associated with software in automated
systems). For knowledge-based systems, the
following hazards can be identified [Boden
1989][Fox & Das 2000]:

1. Knowledge base “wrong”: beliefs may be
incorrect or data may be missing.

2. Unsound inference: the knowledge base
may be correct, but inferences drawn from
it may be wrong because the inference



procedures being used may be unsound in
some way.

3. Unforeseen contingencies: the knowledge
base may be correct, but reasoning based on
it may break down when it is confronted
with some unusual situation not foreseen by
the designer.

4. Specificity of decision criteria: the decision
criteria built into the system may not be
universally acceptable, i.e., they could have
adverse side effects in certain situations.

When interfacing a knowledge-based system
with a human user, further hazards include (in
addition to usual human-factor issues in
automated systems):

5. Ontological mismatch: the knowledge base
may be correct, but a mismatch occurs
between the meaning of the term as used by
the system and the meaning that the user
attaches to the term.

6. Overconfidence: the user may confer too
much faith on the knowledge-based system
and be deluded into a false sense of safety.
This may be compounded by false precision
of the results when quantitative measures of
confidence are used.

7. Incredulousness: the user may not believe
the recommendations offered by the
knowledge-based system, especially if little
or no explanation of the reasoning is
provided.

4 Case Study 1 — Agent
Technology in Medicine

In this section, we present the application of
AI-based systems in medicine, as exposed in a
recent book [Fox & Das 2000] that has some
interesting insights into the use of autonomous

agent technology in critical applications.

4.1 Overview
The agent approach followed in [Fox & Das
2000] is based on a common framework for
human and machine cognition, called the
domino model, shown in Fig. 2. The domino
represents a collection of proposition databases
(nodes) and inference procedures (arrows),
which add propositions to the databases.

The model is inspired from human decision
procedures in medicine:

=  The situation beliefs database contains a
symbolic representation of the state of the
agent’s knowledge of its environment. In a
medical decision support system, this
would be, for example, the data concerning
a patient: symptoms, test data, diagnoses,
current medical treatments, etc.

=  The problem goals database contains
proposed goals for decisions that will
modify the state of the agent’s environment,
and its knowledge thereof. In a medical
decision support system, the setting of
problem goals is the responsibility of the
doctor. Typical goals would be to diagnose,
test, treat or prescribe.

=  The candidate solutions database contains
propositions for decisions aimed at meeting
a goal. In a medical decision support
system, these propositions can be made on
the basis of the patient’s individual history
together with the body of medical
knowledge.

=  The decisions database contains the set of
possible decisions with arguments for and
against each candidate so as to establish an
order of preference. In a medical decision

Problem
goals

Situation
beliefs

Actions

Candidate
solutions

Decisions Plans

commit

commitargue

schedule

data acquisitionproblem definition

propose solutions

[1]

[2]

[3]

[4] [6]

[7]

[5]

Fig. 2— The domino model [Fox & Das 2000]



support system, the argumentation might be
expressed in terms of supporting or
conclusive evidence for or against a clinical
decision. The set of possible clinical
decisions is presented to the doctor in the
form of substantiated recommendations.
The decision may either lead to a direct
addition to the situation beliefs database
(e.g., a diagnosis, a test result, treatment or
prescription) or to initiate a more complex
plan.

= The plans database contains the set of plans
to which the system has currently
committed. A plan may be destined to
acquire information about the agent’s
environment or to create some change that
will be consistent with its goals. In a
medical decision support system, a plan
might be a therapy protocol, e.g., for cancer
treatment, involving surgery, radiotherapy
and chemotherapy actions.

=  The actions database contains descriptions
of the elementary tasks scheduled as a
result of executing a plan. In a medical
decision support system, elementary actions
might be injections, blood tests, tissue
analyses, etc. The execution of actions
results in updates to the situation beliefs
database.

The domino model is fully supported by
PROforma, the authors’ systematic method of
building intelligent systems, and a practical
technology supporting the method. The
PROforma method maps the basic concepts of
the domino model into a standard set of basic
tasks including decisions, plans and actions.
The development software helps designers to
systematically assemble complex cognitive
functions from these components, and to verify
and test the resulting application. The adopted
engineering lifecycle is shown in Fig. 3.

Task analysis is the development of a model of
expertise by setting out a collection of
decisions, plans, actions and enquiries that are
required to achieve a goal. Tasks may be
connected into a network, with simple
scheduling constraints. The tool supports
knowledge acquisition for each type of task
and expertise modeling in a formal language
called the Red Representational Language
(R2L). A knowledge base written in R2L  is a
declarative specification of tasks and their
interrelationships. Software tools are provided

to analyze the specification and check that it
satisfies certain completeness and consistency
criteria. With a formal model of the general
properties of decisions, plans and many of the
constraints within and between tasks, it is
possible to automatically identify many
problems or potential problems in an R2L
specification. Among the detectable errors are
the following:

= Incorrect data types.

= Invalid syntax of attribute values.

=  Critical missing values for tasks (e.g.,
missing candidates or commitment rules in
decisions).

=  Concepts referred to in inference rules but
not defined.

=  Inconsistent scheduling or temporal
constraints.

= Inconsistent data references.

Once all the syntactic and other formal errors
have been removed, it is possible to execute a
specification to test the adequacy of its
expertise model and its operational behavior.
To avoid the technical drawbacks of
interpreting R2L specifications directly, they
are translated into another level called the
Logic of R2L  (L R2L), which is essentially a

Conceptual design
(domino model)

PROforma task analysis
(decisions, plans, etc.)

Knowledge specification
(R2L)

Implementation and
verification

(LR2L/PROLOG)

Operational testing
and use monitoring

Fig. 3 — PROforma lifecycle for AI
systems [Fox & Das 2000]



temporal propositional logic extended with
certain modal operators. Finally, tasks
described in LR2L are executed by means of an
interpreter written in Prolog.

Although originally intended for designing
knowledge-based medical decision support
systems, Fox and Das also consider the
applicability of the domino model in an
autonomous agent setting. In this case, the
inferences [1], [4] and [5] on Fig. 2 would be
automated instead of being under a doctor’s
responsibility. This raises some interesting
issues, for example, regarding the automatic
commitment of decisions. Although at first
sight a commitment can be made automatically
by choosing the decision that is highest in
rank, a potential problem is when to commit.
At some point, the balance of argument might
strongly favour one option, but if we wait a
little, more information might become
available that changes the order of preference.
Fox and Das propose a safety constraint that
essentially says that there are no further
arguments that can alter the preferred decision.
Such a safety constraint would include the
following:

=  Demonstrating that in the current state of
knowledge, there are no unknown sources
of information that could form the grounds
of further arguments that would result in a
different best action.

=  Demonstrating that the expected costs of
seeking further information exceed the
costs of inappropriately committing to the
current preference.

4.2 Dependability Techniques
The use of a knowledge representation based
on formal logic, a structured lifecycle and a
development method like PROforma adapted
to knowledge-based systems, all help the
developer to reach a certain confidence in the
correctness of the implemented system, but
they are insufficient to guarantee safety in face
of the hazards listed in Section 3 (except
possibly for hazard 2). Quoting from [Fox &
Das 2000] (page 133):

“There are many ways in which we
might address the challenge of making
agent systems sound and safe. For
example, adopting a formal method for
software design and development can do

much to improve safety. Formal
specif icat ion,  ref inement ,  and
verification of software can substantially
improve the integrity of a program, as
can the use of rigorously tested standard
components such as reasoners, decision-
procedures, and even knowledge bases.
However, even the most stringent
empirical testing cannot guarantee
against events or situations not foreseen
during the design process.”

“Safety problems are difficult enough
for ‘closed’ systems where the designers
can be relatively confident of knowing
all the parameters which can affect
performance, and be able to design the
software to respond to abnormal states
or trends (such as flight control
systems). But many systems are to a
greater or lesser extent o p e n: they
operate in an environment which cannot
be comprehensively monitored or
controlled, and in which unpredictable
events will occur. This may be exactly
the kind of application where we want to
deploy autonomous agents.”

Consequently, Fox and Das go on to
investigate techniques for “active safety
management” while a knowledge-based agent
is in operation. An active safety management
system is one that operates in parallel with the
agent’s primary problem-solving and decision-
making functions. They propose an approach
called “Guardian Agents” inspired directly
from the safety bag approach pioneered by
Alcatel Austria in the railway interlocking
system ELEKTRA [Klein 1991]. This system
contains a logic channel, which processes
commands, and a safety channel, which checks
the commands according to safety rules.
Commands that are only allowed under certain
circumstances are carried out only if the
instructions generated by processing the
command in the logic channel are checked and
committed by the safety channel. To minimize
the possibility of common errors in both
channels, different programming paradigms
are used. The logic channel is implemented in
a procedural programming language and the
safety bag is implemented in PAMELA, a rule-
based expert system language. The rule-
oriented programming paradigm is well suited
since the safety requirements themselves are
represented by rules, the rules of the Vienna



railway station’s safety policy. This safety
policy is thus made explicit and relatively
readable for both the original designers and
independent inspectors. Since the rules of the
safety policy are executable, one can be more
confident than if the rules were just the
designers’ documented intentions.

Guardian Agents are a generalization of the
safety bag concept whereby any number of
safety bags can be implemented as reactive
agents that operate actively and independently,
sometimes cooperatively and sometimes
competitively, with the primary application
agent. They give an example of a Guardian
Agent for monitoring a chemotherapy plan for
cancer treatment.

Observing that the railway and chemotherapy
safety bags rely on a set of domain-specific
safety rules, Fox and Das go on to explore the
possibility of a domain-independent safety bag

that agent designers could use in a wide range
of applications. They propose a simple safety
protocol, shown in Fig. 4, based on the domino
model of Fig. 2.

The rules of the protocol in Fig. 4 are to be
interpreted as reactive (situation-driven) rules
whose consequences become true whenever
their premises are true. Strings with initial
capital letters are variables that are universally
instantiated. Section 1 of the protocol captures
the agent’s knowledge of how to assess and
respond to potential hazards. Section 2
embodies a simple policy for when the agent
must seek authorization for its action. Without
describing the protocol in detail, it is
nevertheless interesting to note the relation
causes  and the modality possible  in the
premises of rules (4) and (6).

Evaluation of the relation causes requires
domain-specific knowledge capable of

Section 1
Detect any potentially hazardous anomaly and raise a goal to deal with it.

if results of enquiry is State and (1)
State is not safe

then goal is remedy State

If the abnormal state is a known hazard with a known remedial action then propose it as a
candidate solution to the goal.

if goal is remedy State and (2)
known remedy for State is Action

then candidate for remedy of State is Action

Commit to action if the agent can establish that it is permitted according to the rules of the
protocol.

if candidate for remedy of State is Action and (3)
decision status of Action is permitted and Action is safe

then decision status of Action is obligatory

Section 2
Any action that could be hazardous must be authorized [before it may be executed].

if candidate for remedy of State is Action and (4)
possible(Action causes NewState) and
NewState is not safe

then authorization of Action is obligatory

When an action has been authorized it is permitted.

if authorization of Action is obligatory and (5)
Action is authorized

then Action is permitted

Any action that has no hazardous consequences is permitted.

if candidate for remedy of State is Action and (6)
not(possible(Action causes NewState) and NewState is not safe)

then Action is permitted

Fig. 4 — A basic generalized safety protocol [Fox & Das 2000]



predicting all the states that can be reached
from the current state. Fox and Das cite
qualitative simulation and model-based
prediction as candidate techniques for such
predictions.

The modality possible may be formally
summarized by the following schemas:

possible State is equivalent to not
necessarily not State
necessarily State is equivalent to not
possible not State

Informally, an agent may regard something as
possible if it cannot show that it is impossible.
Thus, rule (4) in Fig. 4 can be informally
interpreted as follows: if the agent cannot show
that all states reachable from the current state
by executing Action are safe states, then
Action must be authorized (e.g., by a human
operator or by another agent).

Fox and Das extend the simple protocol of
Fig. 4 by introducing further rules aimed at
actively preventing dangerous situations,
including those that could be produced as side
effects of actions. They have formalized these
notions in a logic for reasoning about safety,
Lsafe. The logic includes some interesting
modalities (including deontic modalities) as
summarized in Table 1.

It is difficult to say without further study
whether the “active safety management”
approach proposed by Fox and Das for medical
care can indeed be extended to agent
technologies used in other domains, such as
space, but it is definitely an interesting
direction to pursue.

Table 1 — Modalities of the safety logic Lsafe

[Fox & Das 2000]

safe action a or property j is safe

authorized action a is authorized by a superior
agent

preferred action a is preferred to action b

permitted all obligatory preconditions of
action a are satisfied

obligatory action a (property j) is obligatory

[t1, t2] action a (property j) is true in the
interval t1 to t2

5 Case Study 2 — Deep
Space One

In this section, we summarize lessons learnt
from the application of AI-based systems in
the NASA’s on-board controller for Deep
Space One, as exposed in [Muscettola et al.
1998][Feather & Smith 2001].

5.1 Overview
NASA’s “New Millennium” series of
spacecraft is intended to evaluate promising
new technologies and instruments. The first of
these, Deep Space One (DS1), was launched in
1998. Spacecraft autonomy is one of several
innovat ive technologies  that  DS1
demonstrated. The “Remote Agent”
architecture selected as a technology
experiment on DS1, is the first artificial
intelligent-based autonomy architecture to
reside in the flight processor of a spacecraft
and control it for several days without ground
intervention.

The challenge of developing remote agents for
controlling space explorers was driven by four
major properties of the spacecraft domain
[Muscettola et al. 1998]:

=  The spacecraft must carry out autonomous
operations for long periods of time with no
human intervention.

=  Autonomous operations must guarantee
success, given tight deadlines and resource
constraints.

=  Since spacecraft are expensive and often
designed for unique missions, spacecraft
operations require high reliability. Even
with the use of highly reliable hardware, the
harsh environment of space can still cause
unexpected hardware failures. Flight
software must compensate for such failures
by repairing or reconfiguring the hardware,
or switching to possibly degraded operation
modes. Providing such a capability is
complicated by the need of rapid failure
responses to meet hard deadlines and
conserve precious resources, and due to
limited observability of spacecraft state.

=  Spacecraft operation involves concurrent
activi ty  among a set of tightly coupled
subsystems, since the subsystems operate as
concurrent processes that must be
coordinated to enable synergistic



interactions and to control negative ones.
For example, while a camera is taking a
picture, the attitude controller must hold the
spacecraft at a specified attitude, and the
main engine must be off since otherwise it
would produce too much vibrations.

These characteristics of the domain have led to
the development of a Remote Agent (RA)
architecture based on the principles of model-
based programming, on-board deduction and
search, and goal-directed, closed-loop control.
Fig. 5 shows the RA architecture, and its
relationship to the flight software within which
it is embedded. As regards the RA, the need
for autonomous operations with tight resource
constraints and hard deadlines dictated the
need for a temporal Planner/Scheduler (PS),
with an associated mission manager (MM),
that manages resources and develops plans that
achieve goals in a timely manner. The need for
high reliability dictated the use of a reactive
executive (EXEC) that provides robust plan
execution and coordinates execution time
activity,  and a model-based mode
identification and reconfiguration system
(MIR) that enables rapid failure responses in
spite of limited observability of spacecraft
state. The need to handle concurrent activity
impacted the representation formalism used:
PS models the domain with concurrently
evolving state variables, EXEC uses multiple
threads to manage concurrency, and MIR
models the spacecraft as a concurrent transition
system (see [Muscettola et al. 1998] for a
detailed description of each entity that
constitutes the RA, as well as an extensive

discussion of technical issues encountered
while developing the RA).

As regards the RA’s relationship to the flight
software (Fig. 5), RA sends out commands to
the real-time control system (RT). RT provides
the primitive skills of the autonomous system,
which take the form of discrete and continuous
real-time estimation and control tasks, e.g.,
attitude determination and attitude control. RT
responds to commands by changing the modes
of control loops or states of the devices.
Information about the status of RT control
loops and hardware sensors is passed back to
RA either directly or through a set of monitors.
Other on-board systems, called planning
experts, participate in the planning process by
requesting new goals and answering questions
from PS (e.g., questions about estimated
duration of specified turns and resulting
resource consumption).

Through the example of DS1, the process of
working on a real mission with a real mission
schedule provided valuable lessons about
inserting this kind of technology into
operational missions. Muscettola and his
colleagues identified three key technology
insertion lessons:

=  Human-centered operations. While new
classes of missions may require systems
with highly autonomous capabilities, it is
important that such systems also support
operational modes in which humans
exercise tight control over the system.

=  Validation and testing. A major barrier to

Mission
Manager

(MM)

Smart
Executive

(EXEC)

Planner/
Scheduler

(PS)

Mode ID and
Reconfig.

(MIR)

Remote Agent
(RA)

Real-Time
Control

(RT)

Monitors Flight
H/W

Planning Experts

Ground
System

Fig. 5 — RA architecture embedded with flight software [Muscettola et al. 1998]



increasingly autonomous systems is
concern about how to test them and validate
that they will actually perform as desired.
Architectural design choices that let
spacecraft engineers focus on domain
model, rather than on the problem-solving
methods, can significantly help address this
barrier.

=  Schedule impacts. Putting an autonomous
system on-board a spacecraft potentially
has a major impact on the traditional flight
software development schedule, as it can
require knowledge normally codified
during operations (after the system is built)
to be encoded in the system early on.
Developing first things first can alleviate
this problem: focus first on the critical
models at the level necessary to meet
launch requirements; then progressively
refine the models to provide increased
performance and capabilities. The approach
reduces the tendency to have detailed
models of some components while major
spacecraft capabilities are still unmanaged,
and enables the model-based approach to fit
into the risk management approach of the
overall flight software project.

=  Model-based skunkworks1.  Ensuring
coherence of mental models across a large
software team can be inordinately time-
consuming. This has motivated the
development of a research paradigm in
which all software is programmed in a
unified modeling language by a small team
supported by automated synthesis
techniques and collaborative modeling
environments.

Validation and testing issues are further
discussed in the next section. To conclude on
this short overview of the DS1 project, it is
worth noting that the lesson regarding schedule
impacts is in favor of the adoption of an

                                                       
1 The term “skunkworks” was first introduced by

Lockheed Martin to denote their engineering,
technical, consulting, and advisory services with
respect to designing, building, equipping and testing
commercial and military aircraft, and related
equipment. It has since been adopted in a variety of
forms by many organizations as a way to quickly
develop solutions by bypassing some of the time-
consuming bureaucracy and allowing the team to
make ad hoc decisions.

evolutionary program strategy, as defined in
the [MIL-STD-498].

5.2 Dependability Techniques
In this section, we first concentrate on
robustness issues, which mainly relate to
EXEC and MIR (see Fig. 5), and then, on
validation and testing issues through the PS
example.

5 .2 .1 Robus tnes s

EXEC is a robust event-driven and goal-
oriented multi-threaded execution system that
coordinates the activity of the other flight
software modules, both internal and external to
RA. It is built on the Execution Support
language (ESL) [Gat 1996], which provides
control structures such as loops, parallel
activity, synchronization, error handling, and
property locks. These language features are
used to implement robust schedule execution,
hierarchical task decomposition, context-
dependent method selection, routine
reconfiguration management, and event-driven
responses.

One main aspect of EXEC’s behavior is robust
plan execution. EXEC must successfully
execute plans in the presence of uncertainty
and failures. Such a robustness is achieved by
[Muscettola et al. 1998]:

=  Executing flexible plans by running
multiple parallel threads and using fast
constraint propagation algorithms in EXEC
to exploit plan flexibility.

=  Choosing a high level of abstraction for
planned activities so as to delegate as many
detailed activity decisions as possible to the
procedural executive.

=  Handling execution failures using a
combination of robust procedures and
deductive repair planning.

Also, when EXEC is notified by MIR of
degraded capabilities of the hardware and
control system, it keeps track of such
degradation when commanding future planning
cycles.  Such failures are recognized by MIR
trough a combination of monitoring and
diagnosis (see below). For example, one fault
mode in DS1 is for one of the thrusters to be
stuck shut. The attitude control software has
redundant control modes to enable it to



maintain control following the loss of any
single thruster, but an effect of this is that
turns take longer to complete. When EXEC
is notified of this permanent change by
MIR, it passes health information back to
PS.

MIR is provided by the Livingstone system
[Williams & Nayak 1996], which is a
discrete model-based controller that sits at
the nexus between the high level feed-
forward reasoning of classical planning and
scheduling systems, and the low level
feedback control of continuous adaptive
methods (see Fig. 6). It is a discrete
controller in the sense that it constantly
attempts to put the spacecraft hardware and
software into a configuration that achieves
a set point, called a configuration goal, using a
sensing component, called mode identification
(MI), and a commanding component, called
mode reconfiguration (MR). It is model-based
in the sense that it uses a single declarative,
compositional spacecraft model for both MI
and MR. In the RA architecture, MR is used
primarily to assist EXEC in generating
recovery procedures, in response to failures
identified by MI

MI provides the capability to track changes in
the spacecraft’s configurations due to
executive commands and component failures.
It uses the spacecraft model and executive
commands to predict the next nominal
configuration. It then compares the sensor
values predicted by this configuration against
the actual values being monitored on the
spacecraft. Discrepancies between predicted
and monitored values signal a failure. MI
isolates the error and diagnoses its cause —
thus identifying the actual spacecraft
configuration, using algorithms adapted from
model-based diagnosis.

When the current configuration ceases to
satisfy the active configuration goals, MR
capability can identify a least cost set of
control procedures that, when invoked, take the
spacecraft into a new configuration that
satisfies the goals. It can support a variety of
functions, including: mode configuration,
recovery, standby and safing.

5 .2 .2 Validation and testing

As regards validation and testing issues, the
main lessons highlighted in [Muscettola et al.

1998] concern the Planner/Scheduler
component. Indeed, the authors note that
“while AI planning research has so far
concentrated on problem-solving performance,
in mission-critical applications it is validation
of the problem-solving system that takes a
much more prominent role”.

The fact that systems like the RA promise
complete autonomy over a much wider variety
of complex situations than was previously
possible, makes their validation harder than
traditional systems. Fortunately, the use of a
declarative approach dictates a clean
separation between modeling and problem
heuristics within PS. This strict separation of
concerns between models and heuristics
allowed non-AI specialists to inspect the model
and understand the knowledge embedded in
the system without having to be experts in AI
problem solving methods. This should ensure
that the system and mission engineers can
focus on guaranteeing that requirements are
met, and not on the details on how the
reasoning engines manipulate the models in
order to produce solutions efficiently. Hence,
Muscettola and his colleagues conclude that
“inspectable representational techniques and
tools to automatically analyze models and
synthesize problem solving heuristics are
important research areas that will widen the
applicability of AI techniques to real-world
applications”.

Concerning verification and validation of AI
planning systems, a recent paper concentrates
on an important issue related to planner testing,
that is, the development of an automated
generator of planner test oracles [Feather &

Planner Executive

MI MR

Model

Spacecraft

State
updates

Goals
Reconfiguration
commands

CommandsMonitored
values

Fig. 6 — Livingstone architecture diagram
(adapted from [Muscettola et al. 1998])



Smith 2001]. The role of such oracles is to
automatically determine whether or not the
plans produced by a planner in response to a
test suite are correct. Since a sound test suite
for a planner should require hundreds of test
cases, determining plan correctness is a time
and knowledge intensive process. Analyzing
these by hand would have been prohibitively
expensive and error-prone. Hence, some kind
of automated test oracle is clearly needed. In
their paper, Feather and Smith describe a
progression from two successive pilot studies
to the development and use of a planner test
oracle for DS1. The results clearly show both
the feasibility and the necessity of automated
planner test oracles for actual spacecraft’s
autonomous planner (here, exemplified by the
DS1 planner). In fact, without an automated
test oracle, it would have been impossible to
validate the DS1 planner in a cost-effective
manner. Using a large test suite with hundreds
of cases allowed the detection of a total of 84
defects related to violations of high-level
requirements (70), and syntax errors in the
domain model and plan (14). Additionally, the
oracle provided information on which of the
planner constraints had been exercised in the
plan (coverage analysis). This was useful
information for assessing how well the test
cases exercised the model. Emphasis was also
placed on producing “verbose results”, that is,
results reporting more than “OK” when a plan
passed the checks (in that case, the justification
of why a temporal constraint was satisfied is
also given).

The “oracle” problem is a well-known
fundamental issue of software testing. In our
opinion, Feather and Smith’s contribution to
the development of automated test oracles for
planner testing is of utmost interest: due to the
complexity of AI planning systems, such
automated oracles are a prerequisite to the
feasibility of any testing process.

6 Conclusions
AI-based autonomous systems pose some
significant dependability challenges. They are
a relatively new trend in real-world
applications and there have been few studies
aimed specifically at defining appropriate
dependability techniques. However, several
tentative conclusions may be drawn from the
initial study presented in this paper:

=  The problem of verifying and validating
knowledge-independent components of an
AI-based system (e.g.,  inference
mechanisms) is similar to that of classical
software engineering.

=  Separate knowledge representation is one
key aspect that makes verification and
validation of AI-based systems different to
that of classical software engineering (cf.
hazard 1, Section 3). Checking the
consistency and completeness of the
knowledge representation has thus received
deserved attention (cf. Sections 2.3.1 and
4.1). Note, however, that several authors
underline the advantages, from a product
dependability viewpoint, of having domain-
specific knowledge represented separately
from procedural mechanisms making use of
it, since it may be more readily checked by
domain experts. Moreover, inference
mechanisms based on logic may allow
formal proof of correctness properties (cf.
Section 2.2 and hazard 2, Section 3).

=  Learning systems, whose function emerges
from training examples or during operation,
prove to be quite robust in practice.
Nevertheless, they are less amenable to
dependability and safety arguments than
those whose knowledge and inference
mechanisms are determined a priori by the
designer (cf. Section 2.2 and hazards 1 and
2, Section 3).

=  The most significant challenge in the use of
AI-based techniques for autonomy is that of
unanticipated and complex situations in
which the system is nevertheless expected
to act sensibly (cf. hazards 3 and 4, Section
3). There are only two apparent
(complementary) ways to address this
challenge:

- Use extensive simulation testing to
increase statistical confidence that the
autonomous system will behave as
expected. For really extensive
simulation testing, some form of
automated oracle should definitely be
envisaged (cf. Section 5.2.2).

- Use on-line dependability techniques,
such as the safety-bag or safety
supervisor approach to ensure that
catastrophic failures are avoided, which
implies some form of graceful



degradation (cf. Section 4.2) (see, e.g.,
the “executive layer” of the autonomy
architecture presented in [Alami et al.
1998]). The generalization of the safety
bag concept towards “active safety
management” is also an interesting
direction for future research.

=  Although autonomous systems are required
to operate for extensive periods of time
without human intervention, it is important
that autonomous systems also support
human intervention when necessary (cf.
Section 5.1).

=  When humans and AI-based systems are to
interact synergistically, new human factor
risks may be introduced (cf. Section 3,
hazards 5, 6 and 7).

=  Autonomous operation can significantly
impact software development in that
domain-specific knowledge needs to be
encoded early on (cf. Section 5.1). An
evolutionary program development
strategy, such as that defined in [MIL-STD-
498], should facilitate a progressive
refinement approach in which critical
autonomous system capabilities may be
addressed first.

Acknowledgements
This work was financed by the European
Space Agency, under contract ESTEC
14898/01/NL/JA. The authors wish to thank
Jean-Paul Blanquart of Astrium, Félix Ingrand
of LAAS-CNRS, and Jean-Clair Poncet of
Axlog, for the constructive inputs and
comments.

References
[Alami et al. 1998] R. Alami, R. Chatila, S. Fleury,

M. Ghallab and F. Ingrand, “An Architecture
for Autonomy”, International Journal of
Robotic Research, 17 (4), pp.315-37, April
1998.

[Boden 1989] M. C. Boden, Benefits and Risks of
Knowledge-Based Systems, Oxford University
Press, 1989.

[Feather & Smith 2001] M.S. Feather and B. Smith,
“Automatic Generation of Test Oracles — From
Pilot Studies to Application”, Automat ic
Software Engineering, Kluwer Academic
Publishers, 8, pp.31-61, 2001.

[Fox & Das 2000] J. Fox and S. Das, Safe and
Sound - Artificial Intelligence in Hazardous

Applications, AIAA Press / The MIT Press,
2000.

[Fox & Long 2001] M. Fox and D. Long,
PDDL2.1: An Extension to PDDL for
Expressing Temporal Planning Domains,
University of Durham, UK, July 4 2001
 http://www.dur.ac.uk/d.p.long/pddl2.ps.gz

[Gat 1996] E. Gat, “ESL: A language for
Supporting Robust Plan Execution in Embedded
Autonomous Agents”, in Proc. AAAI Fall
Symposium on Plan Execution, L. Pryor (Ed.),
1996.

[Johnson et al., 1999] Timothy L. Johnson, Robert
Koneck and Stephen F. Bush, “Improving UAV
Mission Success Rate through Software Enabled
Control Design”, IEEE Aerospace Conference,
ISBN 0-7803-5846-5, IEEE, August 1999.

[Klein 1991] P. Klein, “The Safety Bag Expert
System in the Electronic Railway Interlocking
System ELEKTRA”, Expert Systems with
Applications, 3 (4), pp.499-560, 1991.

[Lécubin et al. 2001] N. Lécubin, J. C. Poncet, D.
Powell and P. Thévenod-Fosse, SPAAS:
Software Product Assurance for Autonomy on-
board Spacecraft. Lessons Learnt from
Autonomous Non-Space Applications
(Deliverable TN1), Report N°01267, LAAS-
CNRS, July 2001.
ftp://ftp.estec.esa.nl/pub/tos-
qq/qqs/SPAAS/StudyOutputs/SPAAS_TN1_1_0.pdf

[Marcos et al. 1995] M. Marcos, S. Moisan, A.P.
del Bopil, "Verification and Validation of
Knowledge-Based Program Supervision", ECC
COMET program, INRIA 1994.

[McDermott 1998] D. McDermott, PDDL - The
Planning Domain Definition Language, Yale
University, Technical Report, N°CVC TR-98-
003/DCS TR-1165, October 1998
ftp://ftp.cs.yale.edu/pub/mcdermott/software/pddl.tar.gz

[MIL-STD-498] (ST08) Software Development and
Documentation, Department of Defense, USA.

[Muscettola et al. 1998] N. Muscettota, P. Pandurag
Nayak, Barney Pell and B.C. Williams,
“Remote Agent: to Boldly go where no AI
System Has Gone Before”, Artificial
Intelligence, Elsevier, 103, pp.5-47, 1998.

[Robertson & Fox 2000] D. Robertson and J. Fox,
Industrial Use of Safety-Related Expert Systems,
Health & Safety Executive, UK, Contract
Research Report, N°296/2000, 2000.

[Williams & Nayak 1996] B.C. Williams and P.P.
Nayak, “A Model-Based Approach to Reactive
Self-Configuring Systems”, in AAAI -96 ,
Portland, OR, AAAI Press, Cambridge, MA,
1996, pp. 971-978.


