Offloading for Secure Microservice Architectures

NAOHIRO HAYASHIBARA

KYOTO SANGYO UNIVERSITY UNIVERSITÉ DE NEUCHÂTEL

Microservice Architectures

Microservice architectures

- Service is built with independent components.
- To improve scalability, flexibility, etc.
- Problem
 - Concentration of network/computational load.
- Solution
 - Offloading in microservice architecture
 - Load-reduction, redundancy, etc.
 - Offloading to edge devices/other platforms

Third-party platforms

2

controller

Security Issues on Offloading

Increased Attack Surface

- Access to devices and platforms
- Deploying components outside

Untrusted Environment

- Nodes might be semi-honest
- Data can be intercepted and leaked

Data Protection

- Data should be encrypted or isolated from untrusted env.
 - Side-channel attack
 - Access pattern analysis

IFIP WG 10.4

Data Transfer

- Communication increases between components
- Data should be protected in transfer

shibara ري, Japan

Secure Offloading

- Purpose
 - Safe execution in untrusted computational environment
 - Minimizing data or information exposed.

• Key Technologies for Secure Offloading

- Data Protection
 - Trusted Execution Environment (TEE)
 - Intel SGX, AMD SEV, Arm TrustZone
- Data Obfuscation
 - Oblivious Random Access Memory (ORAM)
 - Code Obfuscation
- Secure Multi-Party Computation (MPC)
 - Oblivious Transfer (OT)
 - Private Set Intersection (PSI)

IFIP WG 10.4

Challenges

- Secure offloading of building blocks in microservices
 - Agreement Protocols
 - Leader election
 - Membership management
 - Messaging
 - Publish/subscribe systems
 - Logging

Distributed tracing (DT)

- Voting
 - Majority voting
- Re<u>source Management</u>

Resource Allocation

IFIP WG 10.4

Load Balancer

Naohiro Hayashibara Kyoto Sangyo University, Japan

Solutions with obfuscation and MPC

- Leader Election
 - Single Secret Leader Election (SSLE) [Boneh et al. 2020]
 - Trusted Execution Environment (TEE)
- Distributed Tracing
 - Obfuscated Logging
 - An extension of Oblivious Random Access Memory (ORAM)
 - Searchable encryption
- Resource Allocation and Optimization
 - Oblivious Resource Manager for Microservices
 - Private Set Interaction (PSI)

IFIP WG 10.4

Naohiro Hayashibara Kyoto Sangyo University, Japan

Leader Election

- Single Secret Leader Election (SSLE) [Boneh et al. 2020]
 - Electing a leader
 - Paxos, Raft, PoS-based blockchain, etc.
 - Purpose
 - Ensure unpredictability of the leader to be elected
 - Key Technology
 - TEE (e.g., Intel SGX)

IFIP WG 10.4

Single Secret Leader Election

Solutions with obfuscation and MPC

- Leader Election
 - Single Secret Leader Election (SSLE)
 - Trusted Execution Environment (TEE)
- Distributed Tracing
 - Obfuscated Logging
 - An extension of Oblivious Random Access Memory (ORAM)
 - Searchable encryption
- Resource Allocation and Contention Awareness
 - Oblivious Scheduling for Microservices
 - Private Set Interaction (PSI)

IFIP WG 10.4

Naohiro Hayashibara Kyoto Sangyo University, Japan

Obfuscated Logging

Distributed Tracing

- Logging requests
 - Monitoring and analyzing the performance of whole system
 - Anomaly detection using distributed tracing
 - Tools: OpenTelemetry, Zipkin, Jaeger, etc.
- Issue
 - · Collected data could be revealed
 - Encrypted DB does not hide access pattern to data
- Key Technologies
 - An extension of ORAM
- . Searchable encryption

Summary

- Safe offloading for Microservice Architectures
 - Using obfuscation and MPC
 - Leader election
 - Distributed tracing
 - Minimizing data and information exposed to untrusted nodes.
 - Improves performance, reliability without increasing security risk.
- Future work
 - Implement prototypes and performance measurement.
 - Formal verification (e.g., model checking)

Naohiro Hayashibara Kyoto Sangyo University, Japan¹²

IFIP WG 10.4

Solutions with obfuscation and MPC

- Leader Election
 - Single Secret Leader Election (SSLE)
 - Trusted Execution Environment (TEE)
- Distributed Tracing
 - Obfuscated Logging
 - An extension of Oblivious Random Access Memory (ORAM)
 - Searchable encryption

Resource Allocation and Contention Awareness

- Oblivious Scheduling for Microservices
 - Private Set Interaction (PSI)

IFIP WG 10.4

Naohiro Hayashibara Kyoto Sangyo University, Japan 14

Oblivious Resource Manager

Resource Management in Microservices

- Resource Optimization
 - Allocating tasks taking account of requirements
- Issue
 - All execution details should not be exposed
 - Resource and service that are used in a component
- Purpose
 - Minimizing the information leak regarding the execution.
- Key Technologies
 - Multiparty Private Set Intersection (mPSI) [Kolesnikov et al. 2017]

IFIP WG 10.4

Summary

- Safe offloading for Microservice Architectures
 - Using obfuscation and MPC
 - Leader election
 - Distributed tracing
 - Resource management
 - Minimizing data and information exposed to untrusted nodes.
 - Improves performance, reliability without increasing security risk.
- Ongoing tasks
 - Implement prototypes and performance measurement.
 - Formal verification (e.g., model checking) for ensuring obfuscation.

Naohiro Hayashibara Kyoto Sangyo University, Japan ¹⁷

IFIP WG 10.4